已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Online Organizing Large-Scale Heterogeneous Tasks and Multi-Skilled Participants in Mobile Crowdsensing

计算机科学 任务(项目管理) 树(集合论) 匹配(统计) 参与式感知 移动设备 比例(比率) 机器学习 人工智能 人机交互 数据挖掘 数据科学 数学 量子力学 管理 经济 数学分析 物理 操作系统 统计
作者
Lei Han,Zhiwen Yu,Zhiyong Yu,Liang Wang,Houchun Yin,Bin Guo
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:22 (5): 2892-2909 被引量:16
标识
DOI:10.1109/tmc.2021.3132616
摘要

Online gathering large-scale heterogeneous tasks and multi-skilled participant can make the tasks and participants to be shared in real time. However, their online gathering will bring many intractable objective requirements, which makes task-participant matching become extremely complex. To cope well with the gathering, we design a hierarchy tree and time-series queue to organize tasks and participants. The data structures we designed can effectively meet all requirements that are brought due to tasks and participants gathering online. In addition, based on the designed data structures, we study online large-scale heterogeneous task allocation problem from three aspects: the computing pattern, the tree creation method, and the extension of matching strategy. Our best method (TsPY) is based on parallel computing in the computing pattern, adopts time first and then space in the tree creation method, and increases the short-distance first strategy in the matching strategy. Finally, we conducted detailed experiments under the conditions of different participant geographical distributions (i.e., uniform distribution, Gaussian distribution, and check-in empirical distribution), different sensing methods (i.e., participatory sensing and opportunistic sensing), and different recommendation methods (i.e., point recommendation and trajectory recommendation). The experimental results show that TsPY has a good performance in multiple indicators such as algorithm running time, task-participant matching rate, participant travel distance, and redundant tasks removed. Compared with serial computing, parallel computing can reduce the algorithm running time by more than 66% on average in our experimental environment. Compared with space first and then time, creating a tree based on time first and then space can increase task-participant matching rate by more than 13% on average. Increasing the short-distance first strategy can reduce the participant travel distance by more than 4% on average.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoxiao完成签到,获得积分10
1秒前
wanci应助追寻的易烟采纳,获得10
1秒前
2秒前
西瓜刀完成签到 ,获得积分10
2秒前
门捷列夫发布了新的文献求助10
2秒前
着急的语海完成签到,获得积分10
4秒前
繁荣的夏岚完成签到 ,获得积分10
6秒前
6秒前
烟花应助笑点解析采纳,获得10
11秒前
leslie发布了新的文献求助10
12秒前
14秒前
我是老大应助阳佟听荷采纳,获得10
17秒前
Bo发布了新的文献求助10
18秒前
良良丸完成签到 ,获得积分10
19秒前
领导范儿应助歇歇采纳,获得10
22秒前
25秒前
852应助科研通管家采纳,获得10
25秒前
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
25秒前
英姑应助科研通管家采纳,获得10
25秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
刻苦奇异果完成签到 ,获得积分10
26秒前
26秒前
29秒前
31秒前
bkagyin应助HHH采纳,获得10
31秒前
土豪的紫荷完成签到 ,获得积分10
33秒前
35秒前
ZJX发布了新的文献求助10
36秒前
36秒前
丁德乐可发布了新的文献求助10
37秒前
37秒前
xy完成签到,获得积分10
40秒前
HHH发布了新的文献求助10
41秒前
快乐的如风完成签到,获得积分10
41秒前
阳佟听荷发布了新的文献求助10
41秒前
jjffsong发布了新的文献求助10
43秒前
Cccsy完成签到,获得积分10
43秒前
43秒前
li完成签到,获得积分10
43秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516206
求助须知:如何正确求助?哪些是违规求助? 3098515
关于积分的说明 9239788
捐赠科研通 2793547
什么是DOI,文献DOI怎么找? 1533124
邀请新用户注册赠送积分活动 712561
科研通“疑难数据库(出版商)”最低求助积分说明 707359