Quantum-dot-in-perovskite solids

量子点 材料科学 光电子学 钙钛矿(结构) 外延 相(物质) 纳米技术 化学 结晶学 有机化学 图层(电子)
作者
Zhijun Ning,Xiwen Gong,Riccardo Comin,Grant Walters,Fengjia Fan,Oleksandr Voznyy,Emre Yassitepe,Andrei Buin,Sjoerd Hoogland,Edward H. Sargent
出处
期刊:Nature [Nature Portfolio]
卷期号:523 (7560): 324-328 被引量:518
标识
DOI:10.1038/nature14563
摘要

Organohalide perovskites and preformed colloidal quantum dots are combined in the solution phase to produce epitaxially aligned ‘dots-in-a-matrix’ crystals that have both the excellent electrical transport properties of the perovskite matrix and the high radiative efficiency of the quantum dots. The optoelectronic properties of organohalide perovskite semiconductors show considerable promise for application in the next generation of solar cells. Here Zhijun Ning and colleagues demonstrate another potentially powerful use for such materials as the host medium for colloidal quantum dots. An important feature of this hybrid system is the near-perfect atomic-scale registry at the interface between the quantum dots and the perovskite matrix, resulting in a material that smoothly combines the efficient electrical transport of the perovskite with the high radiative efficiency of the quantum dots. Heteroepitaxy—atomically aligned growth of a crystalline film atop a different crystalline substrate—is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes1,2,3,4,5. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots6,7,8,9,10. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned ‘dots-in-a-matrix’ crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
沉默的茉莉完成签到 ,获得积分10
2秒前
LL发布了新的文献求助10
3秒前
慕青应助文艺的听白采纳,获得10
3秒前
30040发布了新的文献求助10
4秒前
能干的丸子完成签到,获得积分10
4秒前
企鹅完成签到,获得积分20
4秒前
顾矜应助泽锦臻采纳,获得20
4秒前
4秒前
飞飞发布了新的文献求助10
5秒前
大卷完成签到,获得积分10
6秒前
月亮啊发布了新的文献求助10
6秒前
biog12发布了新的文献求助20
6秒前
7秒前
大模型应助Jonas采纳,获得10
7秒前
生活于微完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
汉堡包应助wkwwkwkwk采纳,获得10
9秒前
憨憨芸发布了新的文献求助10
9秒前
10秒前
镜缘完成签到 ,获得积分20
11秒前
11秒前
共享精神应助30040采纳,获得10
11秒前
11秒前
LL完成签到,获得积分10
12秒前
Una发布了新的文献求助10
13秒前
14秒前
sera33发布了新的文献求助10
14秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
pylchm完成签到,获得积分10
18秒前
18秒前
19秒前
明理春天完成签到 ,获得积分10
20秒前
21秒前
wkwwkwkwk发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662463
求助须知:如何正确求助?哪些是违规求助? 3223261
关于积分的说明 9750686
捐赠科研通 2933115
什么是DOI,文献DOI怎么找? 1605919
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734743