Quantum-dot-in-perovskite solids

量子点 材料科学 光电子学 钙钛矿(结构) 外延 相(物质) 纳米技术 化学 结晶学 有机化学 图层(电子)
作者
Zhijun Ning,Xiwen Gong,Riccardo Comin,Grant Walters,Fengjia Fan,Oleksandr Voznyy,Emre Yassitepe,Andrei Buin,Sjoerd Hoogland,Edward H. Sargent
出处
期刊:Nature [Nature Portfolio]
卷期号:523 (7560): 324-328 被引量:552
标识
DOI:10.1038/nature14563
摘要

Organohalide perovskites and preformed colloidal quantum dots are combined in the solution phase to produce epitaxially aligned ‘dots-in-a-matrix’ crystals that have both the excellent electrical transport properties of the perovskite matrix and the high radiative efficiency of the quantum dots. The optoelectronic properties of organohalide perovskite semiconductors show considerable promise for application in the next generation of solar cells. Here Zhijun Ning and colleagues demonstrate another potentially powerful use for such materials as the host medium for colloidal quantum dots. An important feature of this hybrid system is the near-perfect atomic-scale registry at the interface between the quantum dots and the perovskite matrix, resulting in a material that smoothly combines the efficient electrical transport of the perovskite with the high radiative efficiency of the quantum dots. Heteroepitaxy—atomically aligned growth of a crystalline film atop a different crystalline substrate—is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes1,2,3,4,5. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots6,7,8,9,10. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned ‘dots-in-a-matrix’ crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
tsuki完成签到 ,获得积分10
刚刚
xin完成签到,获得积分10
1秒前
gattina发布了新的文献求助10
1秒前
kiven完成签到 ,获得积分10
1秒前
Emper发布了新的文献求助10
4秒前
6秒前
江屿完成签到,获得积分20
6秒前
6秒前
7秒前
8秒前
丘比特应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
10秒前
啾啾应助科研通管家采纳,获得20
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
完美世界应助Liu +采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
cake1106发布了新的文献求助10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
褪寂完成签到,获得积分10
13秒前
研友_Z1WrgL发布了新的文献求助20
14秒前
14秒前
洋子完成签到 ,获得积分10
15秒前
16秒前
123发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5218912
求助须知:如何正确求助?哪些是违规求助? 4392767
关于积分的说明 13677175
捐赠科研通 4255477
什么是DOI,文献DOI怎么找? 2334980
邀请新用户注册赠送积分活动 1332572
关于科研通互助平台的介绍 1286834