Multi-attribute adaptive aggregation transformer for vehicle re-identification

计算机科学 变压器 编码 人工智能 车辆跟踪系统 特征提取 计算机视觉 特征(语言学) 模式识别(心理学) 数据挖掘 工程类 分割 基因 电气工程 哲学 生物化学 电压 化学 语言学
作者
Zhi Yu,Jiaming Pei,Mingpeng Zhu,Jiwei Zhang,Jinhai Li
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (2): 102868-102868 被引量:51
标识
DOI:10.1016/j.ipm.2022.102868
摘要

• A vehicle attribute transformer for vehicle re-identification is proposed, which can aggregate the attributes of vehicle model, color and viewpoint adaptively. • A multi-sample dispersion triplet loss is designed to optimize the proposed transformer network, which can consider richer positive and negative sample information. • Extensive experiments on popular vehicle re-identification datasets verify that the proposed method can achieve state-of-the-art performance. With the continuous development of intelligent transportation systems, vehicle-related fields have emerged a research boom in detection, tracking, and retrieval. Vehicle re-identification aims to judge whether a specific vehicle appears in a video stream, which is a popular research direction. Previous researches have proven that the transformer is an efficient method in computer vision, which treats a visual image as a series of patch sequences. However, an efficient vehicle re-identification should consider the image feature and the attribute feature simultaneously. In this work, we propose a vehicle attribute transformer (VAT) for vehicle re-identification. First, we consider color and model as the most intuitive attributes of the vehicle, the vehicle color and model are relatively stable and easy to distinguish. Therefore, the color feature and the model feature are embedded in a transformer. Second, we consider that the shooting angle of each image may be different, so we encode the viewpoint of the vehicle image as another additional attribute. Besides, different attributes are supposed to have different importance. Based on this, we design a multi-attribute adaptive aggregation network, which can compare different attributes and assign different weights to the corresponding features. Finally, to optimize the proposed transformer network, we design a multi-sample dispersion triplet (MDT) loss. Not only the hardest samples based on hard mining strategy, but also some extra positive samples and negative samples are considered in this loss. The dispersion of multi-sample is utilized to dynamically adjust the loss, which can guide the network to learn more optimized division for feature space. Extensive experiments on popular vehicle re-identification datasets verify that the proposed method can achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助科研民工采纳,获得10
1秒前
4秒前
4秒前
4秒前
星辰大海应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
8秒前
JstLv发布了新的文献求助10
9秒前
9秒前
10秒前
东方发布了新的文献求助10
11秒前
3201完成签到,获得积分20
13秒前
斯文败类应助求知的周采纳,获得10
13秒前
14秒前
WELXCNK发布了新的文献求助10
14秒前
万能图书馆应助平常中蓝采纳,获得10
14秒前
科研民工发布了新的文献求助10
15秒前
zzzzzaaw发布了新的文献求助10
16秒前
16秒前
17秒前
h200hh发布了新的文献求助10
19秒前
19秒前
19秒前
嫩黄的大纽子花完成签到,获得积分20
20秒前
英俊的铭应助Roy采纳,获得10
21秒前
求知的周发布了新的文献求助10
22秒前
feifei发布了新的文献求助10
23秒前
七里香发布了新的文献求助10
23秒前
七点起床完成签到 ,获得积分10
23秒前
xcs完成签到,获得积分10
25秒前
27秒前
平常中蓝发布了新的文献求助10
31秒前
32秒前
万精油发布了新的社区帖子
34秒前
35秒前
35秒前
墨点完成签到 ,获得积分10
35秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Restraining Hand: Captivity for Christ in China 500
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376582
求助须知:如何正确求助?哪些是违规求助? 2992527
关于积分的说明 8751419
捐赠科研通 2676874
什么是DOI,文献DOI怎么找? 1466340
科研通“疑难数据库(出版商)”最低求助积分说明 678265
邀请新用户注册赠送积分活动 669861