插值空间
Birnbaum–Orlicz空间
索波列夫空间
索波列夫不等式
平面域的Sobolev空间
函数空间
功能(生物学)
数学分析
数学
纯数学
功能分析
进化生物学
基因
化学
生物化学
生物
作者
Steven G. Krantz,Harold R. Parks
出处
期刊:Birkhäuser Boston eBooks
[Birkhäuser Boston]
日期:1999-01-01
卷期号:: 143-155
标识
DOI:10.1007/978-1-4612-1574-5_4
摘要
This book has given substantial attention to the C k spaces. Such spaces are suitable classes from which to select the defining function for a domain, and the C k spaces are natural in a number of other geometric contexts. However, in the study of partial differential equations and Fourier analysis, the Sobolev spaces are more convenient. The definition of the Sobolev spaces is less near the surface than that of the C k spaces, but theorems about Sobolev spaces are more accessible. In the end, the Sobolev imbedding theorem allows one to pass back and forth between the C k spaces and the Sobolev spaces (however one must pay with a certain lack of precision that is present in the imbedding theorem).
科研通智能强力驱动
Strongly Powered by AbleSci AI