The adaptive weight learning function for reliability analysis and its application to multiple active learning methods

样品(材料) 功能(生物学) 人工智能 可靠性(半导体) 机器学习 计算机科学 主动学习(机器学习) 样本量测定 数学 统计 生物 物理 进化生物学 量子力学 功率(物理) 化学 色谱法
作者
Jingkui Li,Wenqi Liu,Yan Zhou,Zhandong Li
出处
期刊:Quality and Reliability Engineering International [Wiley]
卷期号:38 (7): 3755-3770 被引量:1
标识
DOI:10.1002/qre.3171
摘要

Abstract In engineering, evaluating the failure probability of structures with complex performance functions is a challenging task. Some active learning methods based on the Kriging model gain considerable attention for structural reliability analysis. The existing learning functions offer new learning criterions to select sample points, but the probability density function (PDF) of sample points is ignored in some learning functions. To decrease selecting sample points in low PDF regions, this study presents a new adaptive weight learning function (WLF). The learning function WLF constituted by the adaptive orient function and the joint PDF can be applicable to multiple learning functions. Depending on the importance degree of candidate sample points, the sample points can be assigned different weight by learning function WLF. When the leaning function WLF is applicated to the existing active learning methods, the sample point with a higher PDF in neighborhood of the limit state function (LSF) can be given a larger weight to preferentially select into design of experiments (DoE). Therefore, the learning function WLF can help the multiple learning functions to select informative sample points with high PDF, which can further improve the efficiency of these learning functions. Four examples are used to illustrate the accuracy and efficiency as well as the suitability of the learning function WLF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xu发布了新的文献求助10
5秒前
夏夏完成签到,获得积分10
10秒前
13秒前
幽默的妍完成签到 ,获得积分10
14秒前
可可完成签到 ,获得积分10
16秒前
言午完成签到 ,获得积分10
16秒前
junjie发布了新的文献求助10
16秒前
浮浮世世完成签到,获得积分10
20秒前
淡然的芷荷完成签到 ,获得积分10
23秒前
fge完成签到,获得积分10
25秒前
玻璃外的世界完成签到,获得积分10
29秒前
1111111111应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
leaolf应助科研通管家采纳,获得150
32秒前
Ava应助科研通管家采纳,获得10
32秒前
顾矜应助科研通管家采纳,获得10
32秒前
任kun发布了新的文献求助10
33秒前
好学的泷泷完成签到 ,获得积分10
34秒前
nano完成签到 ,获得积分10
34秒前
38秒前
纯真保温杯完成签到 ,获得积分10
42秒前
刘佳佳完成签到 ,获得积分10
43秒前
宝贝完成签到 ,获得积分10
45秒前
玛斯特尔完成签到,获得积分10
48秒前
看文献完成签到,获得积分0
49秒前
Joanne完成签到 ,获得积分10
49秒前
hikevin126完成签到,获得积分10
53秒前
哈哈哈完成签到 ,获得积分10
55秒前
mango发布了新的文献求助10
55秒前
安详映阳完成签到 ,获得积分10
59秒前
杨杨杨完成签到,获得积分10
1分钟前
jzmulyl完成签到,获得积分10
1分钟前
506407完成签到,获得积分10
1分钟前
aki完成签到 ,获得积分10
1分钟前
天才小榴莲完成签到,获得积分10
1分钟前
朴素羊完成签到 ,获得积分10
1分钟前
jzmupyj完成签到,获得积分10
1分钟前
孤单心事完成签到,获得积分10
1分钟前
沉静的乘风完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4918746
求助须知:如何正确求助?哪些是违规求助? 4191111
关于积分的说明 13015764
捐赠科研通 3961150
什么是DOI,文献DOI怎么找? 2171519
邀请新用户注册赠送积分活动 1189578
关于科研通互助平台的介绍 1098155