已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder

计算机科学 人工智能 卷积神经网络 图形 模式识别(心理学) 编码器 深度学习 数据挖掘 机器学习 理论计算机科学 操作系统
作者
Jiacheng Pan,Haocai Lin,Yihong Dong,Yu Wang,Yunxin Ji
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:148: 105823-105823 被引量:55
标识
DOI:10.1016/j.compbiomed.2022.105823
摘要

Existing diagnoses of mental disorders rely on symptoms, patient descriptions, and scales, which are not objective enough. We attempt to explore an objective diagnostic method on fMRI data. Graph neural networks (GNN) have been paid more attention recently because of their advantages in processing unstructured relational data, especially for fMRI data. However, how to deeply embed and well-integrate with different modalities and scales on GNN is still a challenge. Instead of reaching a high degree of fusion, existing GCN methods simply combine image and non-image data. Most graph convolutional network (GCN) models use shallow structures, making it challenging to learn about potential information. Furthermore, current graph construction approaches usually use a single specific brain atlas, limiting the analysis and results. In this paper, a multi-scale adaptive multi-channel fusion deep graph convolutional network based on an attention mechanism (MAMF-GCN) is proposed to better integrate features of modalities and different atlas by exploiting multi-channel correlation. An encoder automatically combines one channel with non-imaging data to generate similarity weights between subjects using a similarity perception mechanism. Other channels generate multi-scale imaging features of fMRI data after processing in the different atlas. Multi-modal information is fused using an adaptive convolution module that applies a deep graph convolutional network (GCN) to extract information from richer hidden layers. To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed method on the Autism Brain Imaging Data Exchange (ABIDE) dataset and the Major Depressive Disorder (MDD) dataset. The experimental result shows that the proposed method outperforms many state-of-the-art methods in node classification performance. An extensive group of experiments on two disease prediction tasks demonstrates that the performance of the proposed MAMF-GCN on MDD/ABIDE dataset is improved by 3.37%–39.83% and 12.59%–32.92%, respectively. Moreover, our proposed method has also shown very effective performance in real-life clinical diagnosis. The comprehensive experiments demonstrate that our method is effective for node classification with brain disorders diagnosis. The proposed MAMF-GCN method simultaneously extracts specific and common embeddings from the topology composed of multi-scale imaging features, phenotypic information, and their combinations, then learning adaptive embedding weights by attention mechanism, which can capture and fuse the multi-scale essential embeddings to improve the classification performance of brain disorder diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辽宁科技大学完成签到 ,获得积分10
1秒前
xxfsx应助研友_LMBPXn采纳,获得10
2秒前
5秒前
Thrain完成签到,获得积分10
5秒前
6秒前
6秒前
gxmu6322完成签到,获得积分10
9秒前
9秒前
cndxh发布了新的文献求助10
12秒前
xxfsx应助研友_LMBPXn采纳,获得10
12秒前
斯文明杰发布了新的文献求助10
13秒前
17秒前
Emma完成签到 ,获得积分10
17秒前
18秒前
情怀应助cndxh采纳,获得10
19秒前
Zylan完成签到,获得积分10
20秒前
周周周发布了新的文献求助10
21秒前
吴小燕发布了新的文献求助10
23秒前
隐形大白完成签到,获得积分10
23秒前
没时间解释了完成签到 ,获得积分10
25秒前
youlinn发布了新的文献求助10
25秒前
悠悠完成签到 ,获得积分10
25秒前
sweet完成签到 ,获得积分10
26秒前
研友_VZG7GZ应助科研通管家采纳,获得10
26秒前
英俊的铭应助科研通管家采纳,获得10
26秒前
善学以致用应助斯文明杰采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
Momomo应助zhuzhihao采纳,获得10
26秒前
斯文败类应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
27秒前
英姑应助科研通管家采纳,获得10
27秒前
28秒前
怡然书萱发布了新的文献求助10
29秒前
29秒前
30秒前
cndxh完成签到,获得积分10
30秒前
简让完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482112
求助须知:如何正确求助?哪些是违规求助? 4583088
关于积分的说明 14388421
捐赠科研通 4511951
什么是DOI,文献DOI怎么找? 2472648
邀请新用户注册赠送积分活动 1458905
关于科研通互助平台的介绍 1432309