MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder

计算机科学 人工智能 卷积神经网络 图形 模式识别(心理学) 编码器 深度学习 数据挖掘 机器学习 理论计算机科学 操作系统
作者
Jiacheng Pan,Haocai Lin,Yihong Dong,Yu Wang,Yunxin Ji
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:148: 105823-105823 被引量:55
标识
DOI:10.1016/j.compbiomed.2022.105823
摘要

Existing diagnoses of mental disorders rely on symptoms, patient descriptions, and scales, which are not objective enough. We attempt to explore an objective diagnostic method on fMRI data. Graph neural networks (GNN) have been paid more attention recently because of their advantages in processing unstructured relational data, especially for fMRI data. However, how to deeply embed and well-integrate with different modalities and scales on GNN is still a challenge. Instead of reaching a high degree of fusion, existing GCN methods simply combine image and non-image data. Most graph convolutional network (GCN) models use shallow structures, making it challenging to learn about potential information. Furthermore, current graph construction approaches usually use a single specific brain atlas, limiting the analysis and results. In this paper, a multi-scale adaptive multi-channel fusion deep graph convolutional network based on an attention mechanism (MAMF-GCN) is proposed to better integrate features of modalities and different atlas by exploiting multi-channel correlation. An encoder automatically combines one channel with non-imaging data to generate similarity weights between subjects using a similarity perception mechanism. Other channels generate multi-scale imaging features of fMRI data after processing in the different atlas. Multi-modal information is fused using an adaptive convolution module that applies a deep graph convolutional network (GCN) to extract information from richer hidden layers. To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed method on the Autism Brain Imaging Data Exchange (ABIDE) dataset and the Major Depressive Disorder (MDD) dataset. The experimental result shows that the proposed method outperforms many state-of-the-art methods in node classification performance. An extensive group of experiments on two disease prediction tasks demonstrates that the performance of the proposed MAMF-GCN on MDD/ABIDE dataset is improved by 3.37%–39.83% and 12.59%–32.92%, respectively. Moreover, our proposed method has also shown very effective performance in real-life clinical diagnosis. The comprehensive experiments demonstrate that our method is effective for node classification with brain disorders diagnosis. The proposed MAMF-GCN method simultaneously extracts specific and common embeddings from the topology composed of multi-scale imaging features, phenotypic information, and their combinations, then learning adaptive embedding weights by attention mechanism, which can capture and fuse the multi-scale essential embeddings to improve the classification performance of brain disorder diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
张小秉完成签到,获得积分10
1秒前
1秒前
完美世界应助nana采纳,获得10
2秒前
子渊完成签到 ,获得积分10
2秒前
小二郎应助刘浩然采纳,获得10
2秒前
Orange应助刘浩然采纳,获得10
2秒前
科研通AI6应助上官采纳,获得10
2秒前
2秒前
3秒前
kingsley320完成签到,获得积分10
3秒前
3秒前
4秒前
科目三应助能干雁凡采纳,获得10
4秒前
nn发布了新的文献求助10
4秒前
lijiawei发布了新的文献求助10
4秒前
GQ发布了新的文献求助10
5秒前
不踩油门发布了新的文献求助10
5秒前
6秒前
eric888应助ning采纳,获得200
6秒前
风清扬发布了新的文献求助10
6秒前
糟糕的语芹完成签到 ,获得积分10
7秒前
drchen发布了新的文献求助10
7秒前
jovrtic发布了新的文献求助10
8秒前
段yt发布了新的文献求助10
9秒前
SnownS发布了新的文献求助80
9秒前
clara完成签到 ,获得积分10
9秒前
10秒前
顾矜应助333采纳,获得10
10秒前
赘婿应助马某某某某某采纳,获得10
10秒前
玖爱完成签到,获得积分10
10秒前
Owen应助会武功的阿吉采纳,获得10
11秒前
12秒前
12秒前
田様应助保奔采纳,获得10
15秒前
16秒前
称心香薇发布了新的文献求助10
16秒前
xuleiman发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589658
求助须知:如何正确求助?哪些是违规求助? 4674292
关于积分的说明 14792969
捐赠科研通 4628917
什么是DOI,文献DOI怎么找? 2532363
邀请新用户注册赠送积分活动 1501031
关于科研通互助平台的介绍 1468487