MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder

计算机科学 人工智能 卷积神经网络 图形 模式识别(心理学) 编码器 深度学习 数据挖掘 机器学习 理论计算机科学 操作系统
作者
Jiacheng Pan,Haocai Lin,Yihong Dong,Yu Wang,Yunxin Ji
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:148: 105823-105823 被引量:55
标识
DOI:10.1016/j.compbiomed.2022.105823
摘要

Existing diagnoses of mental disorders rely on symptoms, patient descriptions, and scales, which are not objective enough. We attempt to explore an objective diagnostic method on fMRI data. Graph neural networks (GNN) have been paid more attention recently because of their advantages in processing unstructured relational data, especially for fMRI data. However, how to deeply embed and well-integrate with different modalities and scales on GNN is still a challenge. Instead of reaching a high degree of fusion, existing GCN methods simply combine image and non-image data. Most graph convolutional network (GCN) models use shallow structures, making it challenging to learn about potential information. Furthermore, current graph construction approaches usually use a single specific brain atlas, limiting the analysis and results. In this paper, a multi-scale adaptive multi-channel fusion deep graph convolutional network based on an attention mechanism (MAMF-GCN) is proposed to better integrate features of modalities and different atlas by exploiting multi-channel correlation. An encoder automatically combines one channel with non-imaging data to generate similarity weights between subjects using a similarity perception mechanism. Other channels generate multi-scale imaging features of fMRI data after processing in the different atlas. Multi-modal information is fused using an adaptive convolution module that applies a deep graph convolutional network (GCN) to extract information from richer hidden layers. To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed method on the Autism Brain Imaging Data Exchange (ABIDE) dataset and the Major Depressive Disorder (MDD) dataset. The experimental result shows that the proposed method outperforms many state-of-the-art methods in node classification performance. An extensive group of experiments on two disease prediction tasks demonstrates that the performance of the proposed MAMF-GCN on MDD/ABIDE dataset is improved by 3.37%–39.83% and 12.59%–32.92%, respectively. Moreover, our proposed method has also shown very effective performance in real-life clinical diagnosis. The comprehensive experiments demonstrate that our method is effective for node classification with brain disorders diagnosis. The proposed MAMF-GCN method simultaneously extracts specific and common embeddings from the topology composed of multi-scale imaging features, phenotypic information, and their combinations, then learning adaptive embedding weights by attention mechanism, which can capture and fuse the multi-scale essential embeddings to improve the classification performance of brain disorder diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesYang发布了新的文献求助10
刚刚
1秒前
starr完成签到,获得积分20
2秒前
情怀应助Jackking采纳,获得10
2秒前
kkk完成签到,获得积分10
2秒前
南北发布了新的文献求助10
2秒前
科研小满发布了新的文献求助10
3秒前
慕青应助daqisong采纳,获得10
3秒前
swan完成签到 ,获得积分20
3秒前
3秒前
绮罗完成签到 ,获得积分10
3秒前
Mic应助野性的曼香采纳,获得10
4秒前
samurai完成签到,获得积分10
4秒前
4秒前
丘比特应助dbq采纳,获得10
4秒前
ding应助dbq采纳,获得10
4秒前
4秒前
槑槑完成签到,获得积分10
4秒前
4秒前
Mlwwq发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
MathCheck发布了新的文献求助10
5秒前
Flipped完成签到,获得积分10
5秒前
温木成林完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
DIAPTERA完成签到,获得积分10
7秒前
脑洞疼应助JamesYang采纳,获得10
8秒前
害羞耷发布了新的文献求助10
8秒前
EasonZ发布了新的文献求助10
8秒前
鸡毛完成签到,获得积分10
9秒前
谢琳发布了新的文献求助10
9秒前
morning发布了新的文献求助10
9秒前
9秒前
weirdo发布了新的文献求助10
9秒前
10秒前
10秒前
陈云完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728114
求助须知:如何正确求助?哪些是违规求助? 5311529
关于积分的说明 15313202
捐赠科研通 4875379
什么是DOI,文献DOI怎么找? 2618794
邀请新用户注册赠送积分活动 1568399
关于科研通互助平台的介绍 1525035