MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder

计算机科学 人工智能 卷积神经网络 图形 模式识别(心理学) 编码器 深度学习 数据挖掘 机器学习 理论计算机科学 操作系统
作者
Jiacheng Pan,Haocai Lin,Yihong Dong,Yu Wang,Yunxin Ji
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105823-105823 被引量:42
标识
DOI:10.1016/j.compbiomed.2022.105823
摘要

Existing diagnoses of mental disorders rely on symptoms, patient descriptions, and scales, which are not objective enough. We attempt to explore an objective diagnostic method on fMRI data. Graph neural networks (GNN) have been paid more attention recently because of their advantages in processing unstructured relational data, especially for fMRI data. However, how to deeply embed and well-integrate with different modalities and scales on GNN is still a challenge. Instead of reaching a high degree of fusion, existing GCN methods simply combine image and non-image data. Most graph convolutional network (GCN) models use shallow structures, making it challenging to learn about potential information. Furthermore, current graph construction approaches usually use a single specific brain atlas, limiting the analysis and results. In this paper, a multi-scale adaptive multi-channel fusion deep graph convolutional network based on an attention mechanism (MAMF-GCN) is proposed to better integrate features of modalities and different atlas by exploiting multi-channel correlation. An encoder automatically combines one channel with non-imaging data to generate similarity weights between subjects using a similarity perception mechanism. Other channels generate multi-scale imaging features of fMRI data after processing in the different atlas. Multi-modal information is fused using an adaptive convolution module that applies a deep graph convolutional network (GCN) to extract information from richer hidden layers. To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed method on the Autism Brain Imaging Data Exchange (ABIDE) dataset and the Major Depressive Disorder (MDD) dataset. The experimental result shows that the proposed method outperforms many state-of-the-art methods in node classification performance. An extensive group of experiments on two disease prediction tasks demonstrates that the performance of the proposed MAMF-GCN on MDD/ABIDE dataset is improved by 3.37%–39.83% and 12.59%–32.92%, respectively. Moreover, our proposed method has also shown very effective performance in real-life clinical diagnosis. The comprehensive experiments demonstrate that our method is effective for node classification with brain disorders diagnosis. The proposed MAMF-GCN method simultaneously extracts specific and common embeddings from the topology composed of multi-scale imaging features, phenotypic information, and their combinations, then learning adaptive embedding weights by attention mechanism, which can capture and fuse the multi-scale essential embeddings to improve the classification performance of brain disorder diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半夏完成签到,获得积分20
1秒前
小蘑菇应助冷静采纳,获得10
1秒前
wanci应助自然卷卷卷采纳,获得10
4秒前
科研通AI5应助兴奋的白桃采纳,获得10
4秒前
4秒前
ZZ发布了新的文献求助10
4秒前
明年今日完成签到,获得积分10
4秒前
曹小仙男发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
找文献啊找文献完成签到,获得积分0
6秒前
7秒前
少少发布了新的文献求助10
8秒前
lilyz求学发布了新的文献求助10
8秒前
9秒前
Eleven发布了新的文献求助10
9秒前
9秒前
9秒前
小二郎应助无奈的书双采纳,获得10
11秒前
金熙美发布了新的文献求助10
12秒前
12秒前
吕亚发布了新的文献求助10
12秒前
13秒前
14秒前
大模型应助马前人采纳,获得30
14秒前
韩涵发布了新的文献求助10
15秒前
忧伤的冰薇完成签到 ,获得积分10
15秒前
咕咕咕发布了新的文献求助10
15秒前
15秒前
sbw发布了新的文献求助10
16秒前
风清扬发布了新的文献求助200
16秒前
YANG发布了新的文献求助10
18秒前
plasma发布了新的文献求助10
18秒前
19秒前
JamesPei应助FunHigh采纳,获得10
21秒前
21秒前
肿瘤柳叶刀完成签到,获得积分10
21秒前
叶宇豪完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975816
求助须知:如何正确求助?哪些是违规求助? 3520159
关于积分的说明 11201128
捐赠科研通 3256541
什么是DOI,文献DOI怎么找? 1798347
邀请新用户注册赠送积分活动 877539
科研通“疑难数据库(出版商)”最低求助积分说明 806426