MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder

计算机科学 人工智能 卷积神经网络 图形 模式识别(心理学) 编码器 深度学习 数据挖掘 机器学习 理论计算机科学 操作系统
作者
Jiacheng Pan,Haocai Lin,Yihong Dong,Yu Wang,Yunxin Ji
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105823-105823 被引量:44
标识
DOI:10.1016/j.compbiomed.2022.105823
摘要

Existing diagnoses of mental disorders rely on symptoms, patient descriptions, and scales, which are not objective enough. We attempt to explore an objective diagnostic method on fMRI data. Graph neural networks (GNN) have been paid more attention recently because of their advantages in processing unstructured relational data, especially for fMRI data. However, how to deeply embed and well-integrate with different modalities and scales on GNN is still a challenge. Instead of reaching a high degree of fusion, existing GCN methods simply combine image and non-image data. Most graph convolutional network (GCN) models use shallow structures, making it challenging to learn about potential information. Furthermore, current graph construction approaches usually use a single specific brain atlas, limiting the analysis and results. In this paper, a multi-scale adaptive multi-channel fusion deep graph convolutional network based on an attention mechanism (MAMF-GCN) is proposed to better integrate features of modalities and different atlas by exploiting multi-channel correlation. An encoder automatically combines one channel with non-imaging data to generate similarity weights between subjects using a similarity perception mechanism. Other channels generate multi-scale imaging features of fMRI data after processing in the different atlas. Multi-modal information is fused using an adaptive convolution module that applies a deep graph convolutional network (GCN) to extract information from richer hidden layers. To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed method on the Autism Brain Imaging Data Exchange (ABIDE) dataset and the Major Depressive Disorder (MDD) dataset. The experimental result shows that the proposed method outperforms many state-of-the-art methods in node classification performance. An extensive group of experiments on two disease prediction tasks demonstrates that the performance of the proposed MAMF-GCN on MDD/ABIDE dataset is improved by 3.37%–39.83% and 12.59%–32.92%, respectively. Moreover, our proposed method has also shown very effective performance in real-life clinical diagnosis. The comprehensive experiments demonstrate that our method is effective for node classification with brain disorders diagnosis. The proposed MAMF-GCN method simultaneously extracts specific and common embeddings from the topology composed of multi-scale imaging features, phenotypic information, and their combinations, then learning adaptive embedding weights by attention mechanism, which can capture and fuse the multi-scale essential embeddings to improve the classification performance of brain disorder diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉从筠发布了新的文献求助10
1秒前
zhangxiao完成签到,获得积分10
1秒前
科研通AI5应助落寞的易绿采纳,获得10
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得30
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
wxyshare应助科研通管家采纳,获得10
2秒前
cherlie应助科研通管家采纳,获得20
2秒前
斯文败类应助邱化兴采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
chenjun7080发布了新的文献求助10
2秒前
今后应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
LPH应助科研通管家采纳,获得30
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
Eva完成签到,获得积分10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得30
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
yyf发布了新的文献求助10
4秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125149
求助须知:如何正确求助?哪些是违规求助? 4329133
关于积分的说明 13490086
捐赠科研通 4163894
什么是DOI,文献DOI怎么找? 2282628
邀请新用户注册赠送积分活动 1283777
关于科研通互助平台的介绍 1223019