光催化
飞秒
异质结
密度泛函理论
半导体
电子转移
激发态
化学
光化学
氧化还原
化学物理
物理
纳米技术
材料科学
光电子学
计算化学
激光器
原子物理学
催化作用
量子力学
有机化学
生物化学
作者
Anqi Shi,Dazhong Sun,Xuemei Zhang,Shilei Ji,Longlu Wang,Xing’ao Li,Qiang Zhao,Xianghong Niu
标识
DOI:10.1021/acscatal.2c01959
摘要
The direct Z-scheme photocatalytic heterojunction, possessing type II band alignments but simultaneously realizing the spatial separation of photogenerated electrons and holes (PEHs) and the well-preserved strong redox ability, is a promising strategy for solving energy and environmental issues. However, the conventional method of solely relying on the direction of interfacial electric field (IEF) to determine the Z-scheme is often different with experiments. Properly evaluating and constructing the direct Z-scheme remain limited. Herein, combining hybrid density functional theory and excited state ultrafast dynamics simulation, we find that the formative factor of the Z-scheme path comes from two aspects by systematically exploring a series of prototypical heterojunctions taking X2Y3 ferroelectrics (X: Al, Ga, In. Y: S, Se, Te) and BCN semiconductors. On the one hand, the interlayer recombination of PEHs with weak redox ability can be significantly promoted by the IEF. On the other hand, for PEHs with strong redox ability, the weak nonadiabatic coupling of interface transfer channel plays a key role in preserving the high activity of PEHs, which can extend the reacting time of PEHs from femtosecond to hundreds of nanosecond scale. This study deepens the understanding of Z-scheme formation and can accelerate the design of direct Z-scheme photocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI