重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Monocular Vision–Enabled 3D Truck Reconstruction: A Novel Optimization Approach Based on Parametric Modeling and Graphics Rendering

卡车 渲染(计算机图形) 计算机科学 挖掘机 摄影测量学 计算机视觉 方向(向量空间) 参数统计 绘图 人工智能 工程类 模拟 计算机图形学(图像) 汽车工程 数学 机械工程 统计 几何学
作者
Junjie Chen,Weisheng Lu,Zhiming Dong
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:36 (5) 被引量:3
标识
DOI:10.1061/(asce)cp.1943-5487.0001041
摘要

Three-dimensional (3D) truck information, e.g., geometry, orientation, and position, can enable various smart construction applications such as monitoring earthwork, enhancing construction safety, and promoting productivity. Whereas stereo cameras have been explored extensively, the use of monocular vision (MV) for object 3D reconstruction still lacks substantial documentation. This study advances the field of MV-enabled 3D truck reconstruction by formulating it as an optimization problem. First, the general geometry of trucks was conceptualized and used to form a truck parametric model (TPM). Then the TPM was rendered by a computer graphics engine to generate synthetic views of the truck. Finally, an optimization algorithm is proposed to calibrate variables of the TPM progressively to maximize the alignment of the synthetic views with a target truck image. The proposed approach, called Mono-Truck, was evaluated by both lab tests and field experiments. The lab tests demonstrated an average error of 10.1%, 6.7 mm, and 0.7° in estimating the truck’s dimensions, position, and orientation, respectively. In the field experiments, Mono-Truck performed well compared with the baseline. This study contributes to the knowledge body by opening a new avenue to the monocular 3D truck reconstruction problem from an optimization perspective. The proposed approach can be generalized further to other types of construction machinery (e.g., excavators, cranes, and bulldozers) for their 3D reconstruction and smart applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuxinying完成签到,获得积分10
刚刚
zjujirenjie发布了新的文献求助10
刚刚
Vicee完成签到,获得积分10
刚刚
1秒前
葛洪成完成签到,获得积分20
1秒前
YYC发布了新的文献求助10
1秒前
Lucas应助甜蜜乐松采纳,获得10
1秒前
miumiu完成签到,获得积分10
1秒前
冲绳巨人完成签到,获得积分10
2秒前
蚊蚊爱读书应助蕯匿采纳,获得10
2秒前
2秒前
浪子完成签到,获得积分10
2秒前
蛋蛋完成签到,获得积分20
3秒前
大模型应助李佳洲采纳,获得10
3秒前
pahuang发布了新的文献求助50
3秒前
TYMX完成签到,获得积分10
4秒前
4秒前
友好板栗发布了新的文献求助10
4秒前
梅子酒发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
好运6连发布了新的文献求助10
7秒前
miumiu发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
可耐的Gamma完成签到,获得积分10
9秒前
10秒前
11秒前
小小鱼完成签到,获得积分10
11秒前
搜集达人应助Balance Man采纳,获得10
11秒前
奈斯发布了新的文献求助10
11秒前
Joseph完成签到,获得积分10
11秒前
月亮0927发布了新的文献求助10
11秒前
kikichiu应助anders采纳,获得10
12秒前
傲娇林完成签到,获得积分20
13秒前
13秒前
开放的丹南完成签到,获得积分10
14秒前
亓小馒完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516