自编码
编码(内存)
符号
概率逻辑
代表(政治)
水准点(测量)
计算机科学
理论计算机科学
特征学习
人工智能
互补性(分子生物学)
解码方法
深度学习
人工神经网络
模式识别(心理学)
算法
机器学习
数学
算术
大地测量学
政治
生物
政治学
法学
遗传学
地理
作者
Changqing Zhang,Yu Geng,Zongbo Han,Yeqing Liu,Huazhu Fu,Qinghua Hu
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2022.3189239
摘要
Modeling complex correlations on multiview data is still challenging, especially for high-dimensional features with possible noise. To address this issue, we propose a novel unsupervised multiview representation learning (UMRL) algorithm, termed autoencoder in autoencoder networks (AE $^2$ -Nets). The proposed framework effectively encodes information from high-dimensional heterogeneous data into a compact and informative representation with the proposed bidirectional encoding strategy. Specifically, the proposed AE $^2$ -Nets conduct encoding in two directions: the inner-AE-networks extract view-specific intrinsic information (forward encoding), while the outer-AE-networks integrate this view-specific intrinsic information from different views into a latent representation (backward encoding). For the nested architecture, we further provide a probabilistic explanation and extension from hierarchical variational autoencoder. The forward–backward strategy flexibly addresses high-dimensional (noisy) features within each view and encodes complementarity across multiple views in a unified framework. Extensive results on benchmark datasets validate the advantages compared to the state-of-the-art algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI