Data-Driven Tire Capacity Estimation With Experimental Verification

轮胎平衡 制动器 汽车工程 车辆动力学 工程类 试验数据 打滑(空气动力学) 弹道 航程(航空) 路面 扭矩 计算机科学 控制理论(社会学) 模拟 控制(管理) 人工智能 化学 天然橡胶 物理 土木工程 软件工程 有机化学 天文 热力学 航空航天工程
作者
Nan Xu,Ehsan Hashemi,Zepeng Tang,Amir Khajepour
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 21569-21581 被引量:8
标识
DOI:10.1109/tits.2022.3177895
摘要

Tire states and capacity monitoring is critical for vehicle and wheel stabilization controls in automated driving and active safety systems. Tire capacity, which represents the performance margin of tire forces from its limits, determines the operational range for vehicle control systems and their actuation through steering or torques at each tire to maintain stability while performing trajectory following. This paper presents a generic tire capacity identification framework that can handle different normal loads, road surface friction, and combined-slip driving scenarios, which are challenging for stabilization and tracking control programs in automated driving systems. A novel measuring method for generating force-training data is designed by combining the indoor tire test procedure and tread rubber friction test rig, in order to obtain adequate and high-quality benchmark datasets. The results from large data sets from road experimenting and indoor tire test facilities, including pure- and combined-slip conditions, confirm effectiveness of the developed learning-based tire capacity estimation which utilizes notions from the model description with bounded uncertainty. More importantly, the proposed method can provide reliable tire properties ranging from the linear to the sliding regions. Further validation is performed on a real test car with on-board sensory measurements, and the results confirm accuracy of the proposed method for various free rolling and hard launch/brake scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
急急急完成签到,获得积分10
1秒前
1秒前
zz完成签到 ,获得积分10
1秒前
我是老大应助tan采纳,获得10
1秒前
1秒前
桐桐应助shine采纳,获得10
1秒前
科研通AI5应助jiajia采纳,获得30
2秒前
充电宝应助Enoelle采纳,获得10
2秒前
2秒前
慕青应助搬石头采纳,获得10
3秒前
可爱的函函应助阿巴阿巴采纳,获得10
3秒前
Hello应助jizhiyu采纳,获得10
3秒前
3秒前
科研通AI5应助无辜鞋子采纳,获得100
3秒前
3秒前
3秒前
4秒前
heyunhua23发布了新的文献求助10
5秒前
liuhll发布了新的文献求助30
5秒前
yuan发布了新的文献求助10
5秒前
瘦瘦柠檬发布了新的文献求助10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
yxzha完成签到 ,获得积分10
8秒前
心想事陈完成签到,获得积分10
9秒前
jjjjjj发布了新的文献求助10
9秒前
Lucas应助will采纳,获得10
9秒前
muyassar完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
祝愿完成签到,获得积分10
12秒前
13秒前
十二完成签到,获得积分10
13秒前
Ye完成签到,获得积分20
14秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663010
求助须知:如何正确求助?哪些是违规求助? 3223738
关于积分的说明 9753126
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606294
邀请新用户注册赠送积分活动 758404
科研通“疑难数据库(出版商)”最低求助积分说明 734792