迭代学习控制
火车
跟踪误差
趋同(经济学)
地铁列车时刻表
控制理论(社会学)
计算机科学
有界函数
磁道(磁盘驱动器)
跟踪(教育)
功能(生物学)
迭代法
能量(信号处理)
数学优化
算法
控制(管理)
数学
人工智能
数学分析
操作系统
经济增长
统计
地图学
经济
生物
教育学
地理
心理学
进化生物学
标识
DOI:10.23919/ascc56756.2022.9828253
摘要
In the actual operation of trains, the operation lengths may vary due to schedule changes or emergencies. This paper applies the iterative learning control (ILC) to the problem of a high speed train (HST) to track the reference speed trajectories with nonuniform operation lengths. Two cases of zero initial error and random bounded initial error are considered. An iterative learning law and a parameter updating law are designed to solve the problem. By utilizing the composite energy function (CEF) method, convergence of speed tracking error is rigorously proved. The theoretical results are verified by numerical simulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI