Deep Texton-Coherence Network for Camouflaged Object Detection

计算机科学 人工智能 模式识别(心理学) 判别式 卷积神经网络 连贯性(哲学赌博策略) 计算机视觉 目标检测 双线性插值 数学 统计
作者
Wei Zhai,Yang Cao,Haiyong Xie,Zheng-Jun Zha
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 5155-5165 被引量:22
标识
DOI:10.1109/tmm.2022.3188401
摘要

Camouflaged object detection is a challenging visual task since the appearance and morphology of foreground objects and background regions are highly similar in nature. Recent CNN-based studies gradually integrated the high-level semantic information and the low-level local features of images through hierarchical and progressive structures to achieve camouflaged object detection. However, these methods ignore the spatial statistical properties of the local context, which is a critical cue for distinguishing and describing camouflaged objects. To address this problem, we propose a novel Deep Texton-Coherence Network (DTC-Net) that leverages the spatial organization of textons in the foreground and background regions as discriminative cues for camouflaged object detection. Specifically, a Local Bilinear module (LB) is devised to obtain the robust representation of texton to trivial details and illumination changes, by replacing the classic first-order linearization operations with bilinear second-order statistical operations in the convolution process. Next, these texton representations are associated with a Spatial Coherence Organization module (SCO) to capture irregular spatial coherence via a deformable convolutional strategy, and then the descriptions of the textons extracted by the LB module are used as weights to suppress features that are spatially adjacent but have different representations. Finally, the texton-coherence representation is integrated with the original features at different levels to achieve camouflaged object detection. Evaluation on the three most challenging camouflaged object detection datasets demonstrats the superiority of the proposed model when compared to the state-of-the-art methods. Furthermore, our ablation studies and performance analyses demonstrate the effectiveness of the texton-coherence module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Mian发布了新的文献求助10
1秒前
完美世界应助张静静采纳,获得10
1秒前
wu完成签到,获得积分10
1秒前
朴素的书琴完成签到,获得积分10
2秒前
dai完成签到,获得积分10
2秒前
务实大船发布了新的文献求助10
2秒前
四夕水窖完成签到,获得积分10
3秒前
FashionBoy应助曾经的臻采纳,获得10
3秒前
白白发布了新的文献求助10
3秒前
打打应助sternen采纳,获得30
3秒前
111完成签到,获得积分10
3秒前
加减乘除发布了新的文献求助10
4秒前
小憩发布了新的文献求助10
4秒前
ASZXDW完成签到,获得积分10
4秒前
飞翔的小舟完成签到,获得积分20
4秒前
csa1007完成签到,获得积分10
4秒前
纷纷故事完成签到,获得积分10
5秒前
5秒前
哲999发布了新的文献求助10
5秒前
麦苳完成签到,获得积分10
5秒前
6秒前
汉堡包应助JIE采纳,获得10
6秒前
伏地魔完成签到,获得积分10
6秒前
7秒前
yyf完成签到,获得积分10
7秒前
XWT完成签到,获得积分10
7秒前
虚安完成签到 ,获得积分10
7秒前
xqy完成签到 ,获得积分10
7秒前
啵乐乐发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
momo完成签到,获得积分10
9秒前
慕青应助饕餮1235采纳,获得10
9秒前
小蘑菇应助CC采纳,获得10
10秒前
白白完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740