Deep Texton-Coherence Network for Camouflaged Object Detection

计算机科学 人工智能 模式识别(心理学) 判别式 卷积神经网络 连贯性(哲学赌博策略) 计算机视觉 目标检测 双线性插值 数学 统计
作者
Wei Zhai,Yang Cao,Haiyong Xie,Zheng-Jun Zha
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 5155-5165 被引量:22
标识
DOI:10.1109/tmm.2022.3188401
摘要

Camouflaged object detection is a challenging visual task since the appearance and morphology of foreground objects and background regions are highly similar in nature. Recent CNN-based studies gradually integrated the high-level semantic information and the low-level local features of images through hierarchical and progressive structures to achieve camouflaged object detection. However, these methods ignore the spatial statistical properties of the local context, which is a critical cue for distinguishing and describing camouflaged objects. To address this problem, we propose a novel Deep Texton-Coherence Network (DTC-Net) that leverages the spatial organization of textons in the foreground and background regions as discriminative cues for camouflaged object detection. Specifically, a Local Bilinear module (LB) is devised to obtain the robust representation of texton to trivial details and illumination changes, by replacing the classic first-order linearization operations with bilinear second-order statistical operations in the convolution process. Next, these texton representations are associated with a Spatial Coherence Organization module (SCO) to capture irregular spatial coherence via a deformable convolutional strategy, and then the descriptions of the textons extracted by the LB module are used as weights to suppress features that are spatially adjacent but have different representations. Finally, the texton-coherence representation is integrated with the original features at different levels to achieve camouflaged object detection. Evaluation on the three most challenging camouflaged object detection datasets demonstrats the superiority of the proposed model when compared to the state-of-the-art methods. Furthermore, our ablation studies and performance analyses demonstrate the effectiveness of the texton-coherence module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Flori发布了新的文献求助30
刚刚
1秒前
1秒前
3秒前
4秒前
砂糖发布了新的文献求助10
4秒前
haha发布了新的文献求助10
4秒前
6秒前
靓丽白卉完成签到,获得积分10
6秒前
老艺术家发布了新的文献求助10
7秒前
SHASHA完成签到,获得积分10
7秒前
海丽完成签到 ,获得积分10
8秒前
Lost发布了新的文献求助10
8秒前
笨笨松发布了新的文献求助10
8秒前
勤奋幻天完成签到 ,获得积分10
8秒前
9秒前
like发布了新的文献求助10
10秒前
复杂硬币完成签到,获得积分20
10秒前
12秒前
12秒前
12秒前
jjamazing应助负责冰凡采纳,获得10
12秒前
情怀应助Lost采纳,获得10
13秒前
13秒前
CharlotteBlue应助复杂硬币采纳,获得30
14秒前
打打应助帅气的小鸭子采纳,获得10
15秒前
15秒前
16秒前
鸡腿战神完成签到,获得积分10
16秒前
ZQ发布了新的文献求助10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
527应助科研通管家采纳,获得20
16秒前
ceeray23应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
华仔应助科研通管家采纳,获得10
17秒前
默默平文完成签到,获得积分10
19秒前
埃特纳氏完成签到 ,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951026
求助须知:如何正确求助?哪些是违规求助? 3496458
关于积分的说明 11082124
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801003