Deep Texton-Coherence Network for Camouflaged Object Detection

计算机科学 人工智能 模式识别(心理学) 判别式 卷积神经网络 连贯性(哲学赌博策略) 计算机视觉 目标检测 双线性插值 数学 统计
作者
Wei Zhai,Yang Cao,Haiyong Xie,Zheng-Jun Zha
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 5155-5165 被引量:22
标识
DOI:10.1109/tmm.2022.3188401
摘要

Camouflaged object detection is a challenging visual task since the appearance and morphology of foreground objects and background regions are highly similar in nature. Recent CNN-based studies gradually integrated the high-level semantic information and the low-level local features of images through hierarchical and progressive structures to achieve camouflaged object detection. However, these methods ignore the spatial statistical properties of the local context, which is a critical cue for distinguishing and describing camouflaged objects. To address this problem, we propose a novel Deep Texton-Coherence Network (DTC-Net) that leverages the spatial organization of textons in the foreground and background regions as discriminative cues for camouflaged object detection. Specifically, a Local Bilinear module (LB) is devised to obtain the robust representation of texton to trivial details and illumination changes, by replacing the classic first-order linearization operations with bilinear second-order statistical operations in the convolution process. Next, these texton representations are associated with a Spatial Coherence Organization module (SCO) to capture irregular spatial coherence via a deformable convolutional strategy, and then the descriptions of the textons extracted by the LB module are used as weights to suppress features that are spatially adjacent but have different representations. Finally, the texton-coherence representation is integrated with the original features at different levels to achieve camouflaged object detection. Evaluation on the three most challenging camouflaged object detection datasets demonstrats the superiority of the proposed model when compared to the state-of-the-art methods. Furthermore, our ablation studies and performance analyses demonstrate the effectiveness of the texton-coherence module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郝大的王完成签到 ,获得积分10
1秒前
2秒前
felix发布了新的文献求助10
3秒前
孤独的无血2完成签到,获得积分20
4秒前
鲤鱼幻枫完成签到,获得积分10
5秒前
sun完成签到 ,获得积分10
5秒前
蕾蕾大酱完成签到,获得积分10
5秒前
落尘完成签到 ,获得积分10
6秒前
fenmiao完成签到,获得积分10
6秒前
12345完成签到 ,获得积分10
7秒前
栀栀云安完成签到,获得积分10
7秒前
蔚111完成签到 ,获得积分10
8秒前
9秒前
9秒前
木子完成签到,获得积分10
10秒前
hbhbj发布了新的文献求助10
11秒前
wlscj应助蕾蕾大酱采纳,获得20
11秒前
昀宇完成签到 ,获得积分10
12秒前
淡淡宇宇宝宝完成签到,获得积分10
12秒前
12秒前
明天见发布了新的文献求助10
13秒前
14秒前
15秒前
沐梓文完成签到,获得积分10
15秒前
杨利英完成签到,获得积分10
15秒前
hbhbj发布了新的文献求助10
18秒前
RATHER完成签到,获得积分10
20秒前
真实的咖啡完成签到,获得积分10
21秒前
21秒前
wl1217完成签到 ,获得积分10
22秒前
22秒前
Dr.han完成签到,获得积分10
23秒前
yy完成签到 ,获得积分10
25秒前
hbhbj发布了新的文献求助10
25秒前
核桃发布了新的文献求助10
25秒前
sube发布了新的文献求助10
27秒前
27秒前
张泽宇完成签到,获得积分10
30秒前
Dobby完成签到,获得积分10
30秒前
草人乙应助andfjkahfilaw采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305985
求助须知:如何正确求助?哪些是违规求助? 4451844
关于积分的说明 13853249
捐赠科研通 4339378
什么是DOI,文献DOI怎么找? 2382507
邀请新用户注册赠送积分活动 1377530
关于科研通互助平台的介绍 1345146