Pseudo-Labeling Based Practical Semi-Supervised Meta-Training for Few-Shot Learning

计算机科学 机器学习 人工智能 平滑的 分类器(UML) 标记数据 训练集 监督学习 班级(哲学) 集合(抽象数据类型) 模式识别(心理学) 数据挖掘 人工神经网络 计算机视觉 程序设计语言
作者
Xingping Dong,Ling Shao,Shengcai Liao
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2207.06817
摘要

Most existing few-shot learning (FSL) methods require a large amount of labeled data in meta-training, which is a major limit. To reduce the requirement of labels, a semi-supervised meta-training (SSMT) setting has been proposed for FSL, which includes only a few labeled samples and numbers of unlabeled samples in base classes. However, existing methods under this setting require class-aware sample selection from the unlabeled set, which violates the assumption of unlabeled set. In this paper, we propose a practical semi-supervised meta-training setting with truly unlabeled data to facilitate the applications of FSL in realistic scenarios. To better utilize both the labeled and truly unlabeled data, we propose a simple and effective meta-training framework, called pseudo-labeling based meta-learning (PLML). Firstly, we train a classifier via common semi-supervised learning (SSL) and use it to obtain the pseudo-labels of unlabeled data. Then we build few-shot tasks from labeled and pseudo-labeled data and design a novel finetuning method with feature smoothing and noise suppression to better learn the FSL model from noise labels. Surprisingly, through extensive experiments across two FSL datasets, we find that this simple meta-training framework effectively prevents the performance degradation of various FSL models under limited labeled data, and also significantly outperforms the state-of-the-art SSMT models. Besides, benefiting from meta-training, our method also improves two representative SSL algorithms as well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
归尘发布了新的文献求助10
1秒前
大模型应助小肥羊采纳,获得10
2秒前
2秒前
阔达雪珊完成签到,获得积分10
2秒前
kx发布了新的文献求助10
3秒前
飘逸妙柏完成签到,获得积分10
4秒前
壮观冰岚发布了新的文献求助10
4秒前
笨笨乐荷完成签到,获得积分10
4秒前
5秒前
久而久之发布了新的文献求助10
5秒前
JamesPei应助魔幻小熊猫采纳,获得10
5秒前
SYLH应助明理采珊采纳,获得10
5秒前
老实的半山完成签到,获得积分10
6秒前
大憨憨完成签到 ,获得积分10
6秒前
IVAN完成签到 ,获得积分10
6秒前
6秒前
7秒前
Zorion发布了新的文献求助10
7秒前
orixero应助乐乐乐乐乐采纳,获得10
8秒前
天天快乐应助调皮的沛萍采纳,获得10
9秒前
儒雅涵易完成签到 ,获得积分10
9秒前
9秒前
赢学发布了新的文献求助10
11秒前
叉猹的闰土应助鲜于灵竹采纳,获得10
11秒前
李健应助王森采纳,获得10
12秒前
归尘发布了新的文献求助30
12秒前
ningning完成签到 ,获得积分10
13秒前
13秒前
重要萍完成签到,获得积分10
13秒前
非非完成签到,获得积分10
13秒前
踏实的平露完成签到,获得积分10
13秒前
Jasper应助晚风采纳,获得10
14秒前
14秒前
14秒前
科研通AI5应助奥暖将采纳,获得10
15秒前
Jane发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554391
求助须知:如何正确求助?哪些是违规求助? 3130250
关于积分的说明 9385569
捐赠科研通 2829495
什么是DOI,文献DOI怎么找? 1555557
邀请新用户注册赠送积分活动 726111
科研通“疑难数据库(出版商)”最低求助积分说明 715446