Prior wavelet knowledge for multi-modal medical image segmentation using a lightweight neural network with attention guided features

计算机科学 人工智能 分割 人工神经网络 模式识别(心理学) 深度学习 图像分割 背景(考古学) 计算机视觉 生物 古生物学
作者
Vivek Kumar Singh,Elham Yousef Kalafi,Shuhang Wang,Alex Benjamin,Mercy Nyamewaa Asiedu,Viksit Kumar,Anthony E. Samir
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:209: 118166-118166 被引量:7
标识
DOI:10.1016/j.eswa.2022.118166
摘要

Medical image segmentation plays a crucial role in diagnosing and staging diseases. It facilitates image analysis and quantification in multiple applications, but building the right appropriate solutions is essential and highly reliant on the features of different datasets and computational resources. Most existing approaches provide segmentation for a specific anatomical region of interest and are limited to multiple imaging modalities in a clinical setting due to their generalizability with high computational requirements. To mitigate these issues, we propose a robust and lightweight deep learning real-time segmentation network for multi-modality medical images called MISegNet. We incorporate discrete wavelet transform (DWT) of the input to extract salient features in the frequency domain. This mechanism allows the neurons' receptive field to enlarge within the network. We propose a self-attention-based global context-aware (SGCA) module with varying dilation rates to enlarge the field of view and designate the importance of each scale that enhances the network's ability to discriminate features. We build a residual shuffle attention (RSA) mechanism to improve the feature representation of the proposed model and formulate a new boundary-aware loss function called Farid End Point Error (FEPE) that correctly segments regions with ambiguous boundaries for edge detection. We confirm the versatility of the proposed model by performing experiments against eleven state-of-the-art segmentation methods on four datasets of different organs, including two publicly available datasets (i.e., ISBI2017, and COVID-19 CT) and two private datasets (i.e., ovary and liver ultrasound images). Experimental results prove that the MISegNet with 1.5M parameters, outperforms the state-of-the-art methods by 1.5%–7% (i.e., dice coefficient score) with a corresponding 23× decrease in the number of parameters and multiply-accumulate operations respectively compared to U-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓代容完成签到,获得积分10
1秒前
星空完成签到 ,获得积分10
1秒前
Yxy2021完成签到 ,获得积分10
1秒前
akihi发布了新的文献求助10
2秒前
我爱学习完成签到,获得积分10
7秒前
yu完成签到 ,获得积分10
7秒前
慕容飞凤完成签到,获得积分10
8秒前
跳跃太清完成签到 ,获得积分10
11秒前
livra1058完成签到,获得积分10
12秒前
waitstill完成签到,获得积分10
13秒前
cxdhxu完成签到 ,获得积分10
13秒前
14秒前
Flyzhang完成签到,获得积分10
14秒前
整点儿薯条完成签到,获得积分10
14秒前
freshman3005完成签到,获得积分10
14秒前
内向怀曼完成签到,获得积分10
14秒前
Tal完成签到,获得积分10
14秒前
犇骉完成签到,获得积分10
14秒前
wukebini完成签到,获得积分10
15秒前
15秒前
晓风完成签到,获得积分10
15秒前
15秒前
李健应助科研通管家采纳,获得10
18秒前
开心浩阑应助科研通管家采纳,获得20
18秒前
xzy998应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
19秒前
沈彬彬发布了新的文献求助10
19秒前
犇骉发布了新的文献求助10
20秒前
温眼张完成签到,获得积分10
20秒前
莫等闲完成签到,获得积分10
22秒前
简单幸福完成签到 ,获得积分10
22秒前
金色天际线完成签到,获得积分10
23秒前
liuchao完成签到,获得积分10
23秒前
不安的大白菜真实的钥匙完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
Lanny完成签到 ,获得积分10
26秒前
上官若男应助wsqg123采纳,获得10
26秒前
Nayvue完成签到,获得积分10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027