Prior wavelet knowledge for multi-modal medical image segmentation using a lightweight neural network with attention guided features

计算机科学 人工智能 分割 人工神经网络 模式识别(心理学) 深度学习 图像分割 背景(考古学) 计算机视觉 古生物学 生物
作者
Vivek Kumar Singh,Elham Yousef Kalafi,Shuhang Wang,Alex Benjamin,Mercy Nyamewaa Asiedu,Viksit Kumar,Anthony E. Samir
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:209: 118166-118166 被引量:7
标识
DOI:10.1016/j.eswa.2022.118166
摘要

Medical image segmentation plays a crucial role in diagnosing and staging diseases. It facilitates image analysis and quantification in multiple applications, but building the right appropriate solutions is essential and highly reliant on the features of different datasets and computational resources. Most existing approaches provide segmentation for a specific anatomical region of interest and are limited to multiple imaging modalities in a clinical setting due to their generalizability with high computational requirements. To mitigate these issues, we propose a robust and lightweight deep learning real-time segmentation network for multi-modality medical images called MISegNet. We incorporate discrete wavelet transform (DWT) of the input to extract salient features in the frequency domain. This mechanism allows the neurons' receptive field to enlarge within the network. We propose a self-attention-based global context-aware (SGCA) module with varying dilation rates to enlarge the field of view and designate the importance of each scale that enhances the network's ability to discriminate features. We build a residual shuffle attention (RSA) mechanism to improve the feature representation of the proposed model and formulate a new boundary-aware loss function called Farid End Point Error (FEPE) that correctly segments regions with ambiguous boundaries for edge detection. We confirm the versatility of the proposed model by performing experiments against eleven state-of-the-art segmentation methods on four datasets of different organs, including two publicly available datasets (i.e., ISBI2017, and COVID-19 CT) and two private datasets (i.e., ovary and liver ultrasound images). Experimental results prove that the MISegNet with 1.5M parameters, outperforms the state-of-the-art methods by 1.5%–7% (i.e., dice coefficient score) with a corresponding 23× decrease in the number of parameters and multiply-accumulate operations respectively compared to U-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情冷雪发布了新的文献求助10
刚刚
1秒前
1秒前
wang完成签到,获得积分10
2秒前
李庆林完成签到,获得积分20
3秒前
韦恩发布了新的文献求助10
3秒前
JamesPei应助拼搏的学长采纳,获得10
3秒前
负责的皮卡丘应助魔幻荟采纳,获得10
3秒前
wenhayang发布了新的文献求助10
3秒前
SJW--666完成签到,获得积分0
4秒前
小松松发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
orixero应助朱gui采纳,获得10
8秒前
潇洒的盼烟完成签到,获得积分10
9秒前
小二郎应助栀初采纳,获得10
9秒前
范慧晨完成签到,获得积分10
10秒前
stars完成签到 ,获得积分10
10秒前
淡淡的飞雪应助jiajia采纳,获得10
11秒前
123完成签到 ,获得积分10
12秒前
韦恩完成签到,获得积分10
12秒前
12秒前
布丁发布了新的文献求助10
12秒前
13秒前
斯文问旋发布了新的文献求助10
13秒前
可乐SAMA发布了新的文献求助10
14秒前
AC1号应助知山知水采纳,获得200
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
深情冷雪完成签到,获得积分20
17秒前
摩天大楼完成签到,获得积分10
17秒前
17秒前
18秒前
小二郎应助abcd采纳,获得10
18秒前
20秒前
20秒前
李爱国应助小脚丫采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4969607
求助须知:如何正确求助?哪些是违规求助? 4226591
关于积分的说明 13163411
捐赠科研通 4014247
什么是DOI,文献DOI怎么找? 2196467
邀请新用户注册赠送积分活动 1209674
关于科研通互助平台的介绍 1123847