Co1-xS/Co3S4@N,S-co-doped agaric-derived porous carbon composites for high-performance supercapacitors

超级电容器 材料科学 电化学 硫化钴 化学工程 纳米复合材料 硫化物 氧化还原 碳纤维 复合数 化学 纳米技术 复合材料 电极 冶金 物理化学 工程类
作者
Jinliang Yi,Fangxiang Song,Liju Zhou,Qianlin Chen,Ling Pan,Min Yang
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:426: 140825-140825 被引量:25
标识
DOI:10.1016/j.electacta.2022.140825
摘要

In recent years, pseudocapacitive transition metal sulfur compounds have received extensive attention as supercapacitor materials owing to their superior intrinsic conductivity. However, developing ideal structures that undergo fast Faraday redox reactions with ultra-long-term cycling performance is an important challenge. Using a homogeneous extract from agaric acid as a carbon source, a one-pot hydrothermal-assisted pyrolysis method was employed to prepare cobalt sulfide compounds. The results showed that Co1-xS/Co9S8 was generated without the addition of carbon source, while Co1-xS/Co3S4 was generated by the addition of agaric base. The prepared N,S-co-doped agaric-derived porous carbon (NSAC) nanocomposite that was densely decorated with (Co1-xS/Co3S4) to give a heterostructure(Co1-xS/Co3S4@NSAC). Co1-xS/Co3S4@NSAC exhibited high specific capacitance, as well as excellent rate capability and cycling stability performance (497.5 F g−1 at 0.5 A g−1, 96 F g−1 at 80 A g−1, with 96.9% capacity retention at 25 A g−1 for 6000 cycles). Symmetrical supercapacitors were fabricated using Co1-xS/Co3S4@NSAC, affording high energy density (17.7 Wh kg−1 at 598.9 W kg−1) and cycling retention (109% capacity retention at 5 A g−1 for 4000 cycles). Based on the experimental results and density functional theory (DFT) calculations, the Co1-xS/Co3S4 heterojunction interface allows for highly reversible and efficient electrochemical redox processes, with fast charge transfer kinetics and structural stability during the electrochemical reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
将夕发布了新的文献求助10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
yyy完成签到 ,获得积分10
3秒前
DG完成签到,获得积分10
3秒前
chai发布了新的文献求助10
5秒前
5秒前
5秒前
yt发布了新的文献求助10
6秒前
五1232发布了新的文献求助10
6秒前
坦率的曲奇完成签到,获得积分10
6秒前
8秒前
9秒前
NOT发布了新的文献求助10
11秒前
12秒前
Archie发布了新的文献求助30
12秒前
平方完成签到,获得积分10
12秒前
cym完成签到,获得积分10
12秒前
Jin完成签到 ,获得积分10
13秒前
77完成签到 ,获得积分10
14秒前
shanshan发布了新的文献求助10
14秒前
15秒前
15秒前
哈哈完成签到,获得积分20
15秒前
16秒前
16秒前
18秒前
西柚稀有西柚完成签到,获得积分10
18秒前
碧蓝怜梦发布了新的文献求助10
18秒前
充电宝应助ln采纳,获得30
19秒前
我是老大应助Archie采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
科研通AI6应助燕子采纳,获得10
22秒前
哈哈发布了新的文献求助10
22秒前
科研通AI6应助DD采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656742
求助须知:如何正确求助?哪些是违规求助? 4805800
关于积分的说明 15077356
捐赠科研通 4814948
什么是DOI,文献DOI怎么找? 2576219
邀请新用户注册赠送积分活动 1531465
关于科研通互助平台的介绍 1490025