清脆的
索引
Cas9
突变体
基因组编辑
基因分型
遗传学
基因
基因座(遗传学)
基因型
生物
计算生物学
单核苷酸多态性
作者
Xueqi Li,Rong Li,Zheng Yuan,Zaobing Zhu,Wenting Xu,Yijie Wang,Dabing Zhang,Litao Yang
标识
DOI:10.1021/acs.analchem.2c01837
摘要
Clustered regularly interspersed short palindromic repeat (CRISPR)/Cas9 gene editing has become a common tool for rapid crop and animal breeding, but efficiently screening out and genotyping for the CRISPR/Cas9-induced mutant lines at a low cost remains challenging. Using rice (Oryza sativa L.) samples genetically edited at the Waxy locus as an example, we developed a single-tube duplex quantitative real-time PCR assisted by an in vitro CRISPR/Cas9 cleavage (Cc-qPCR) method to screen for expected genetically edited lines, identify genotypes, and evaluate gene-editing frequency. In Cc-qPCR, genomic DNA is first cleaved at the target site by the single-guide RNA (sgRNA)/Cas9 complex and then quantified with qPCR to assess for the presence of a mutant and identify sample genotypes. Our findings suggest that Cc-qPCR can successfully identify mutants with small insertions or deletions (indels), even in mutant lines with single-base indels or substitutions. Cc-qPCR was also able to successfully identify heterozygous and homozygous mutants. The sensitivity of Cc-qPCR was determined to be as low as 0.5%, indicating that the method could be used to evaluate the editing efficiency of gene-editing systems. After testing our novel method on Waxy locus-edited rice offspring, our results show that Cc-qPCR is an accurate and effective approach to rapidly identify expected mutants and their genotypes and to evaluate editing efficiency. This method will prove useful for increasing the efficiency and range of molecular breeding techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI