京尼平
壳聚糖
聚乙烯醇
极限抗拉强度
复合数
伤口愈合
聚合物
扫描电子显微镜
傅里叶变换红外光谱
耐折性
化学工程
材料科学
复合材料
外科
医学
工程类
乙基纤维素
作者
Ruchira Panchal,Tarun Mateti,K. Likhith,Fiona Concy Rodrigues,Goutam Thakur
标识
DOI:10.1016/j.reactfunctpolym.2022.105339
摘要
The applications of composite films in wound healing are immense, and the quest for suitable biomaterials drives research. Natural polymers lack mechanical strength; by cross-linking, their chemical nature can be changed through interlinking via intermolecular interactions rather than chemical bonds. This study explores the applications of cross-linked chitosan–polyvinyl alcohol–genipin films prepared using the solvent casting method. The cross-linked films were analyzed for their chemical structural changes, structural morphology, mechanical strength, and water retention capabilities. Comparative studies were performed with the un-crosslinked counterparts. Results indicated an increased tensile strength of 67.2% and improved water retention because of their compact structure. Further, Fourier-transform infrared spectroscopy confirmed that cross-linking occurred in the films, and scanning electron microscope micrographs showed that the films were uniform with a continuous morphology. Thereafter, an in vivo study was performed to assess the effectiveness of the films on wounds made on Albino Wistar rats. Histopathological analysis indicated quick fibroblast generation and angiogenesis using the cross-linked films, affirming their suitability for wound healing applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI