Bubble Plume Target Detection Method of Multibeam Water Column Images Based on Bags of Visual Word Features

计算机科学 栏(排版) 人工智能 支持向量机 计算机视觉中的词袋模型 模式识别(心理学) 气泡 羽流 水柱 遥感 地质学 计算机视觉 图像(数学) 视觉文字 图像检索 并行计算 帧(网络) 物理 海洋学 热力学 电信
作者
Junxia Meng,Jianguo Yan,Jianhu Zhao
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (14): 3296-3296 被引量:6
标识
DOI:10.3390/rs14143296
摘要

Bubble plumes, as main manifestations of seabed gas leakage, play an important role in the exploration of natural gas hydrate and other resources. Multibeam water column images have been widely used in detecting bubble plume targets in recent years because they can wholly record water column and seabed backscatter strengths. However, strong noises in multibeam water column images cause many issues in target detection, and traditional target detection methods are mainly used in optical images and are less efficient for noise-affected sonar images. To improve the detection accuracy of bubble plume targets in water column images, this study proposes a target detection method based on the bag of visual words (BOVW) features and support vector machine (SVM) classifier. First, the characteristics of bubble plume targets in water column images are analyzed, with the conclusion that the BOVW features can well express the gray scale, texture, and shape characteristics of bubble plumes. Second, the BOVW features are constructed following steps of point description extraction, description clustering, and feature encoding. Third, the quadratic SVM classifier is used for the recognition of target images. Finally, a procedure of bubble plume target detection in water column images is described. In the experiment using the measured data in the Strait of Georgia, the proposed method achieved 98.6% recognition accuracy of bubble plume targets in validation sets, and 91.7% correct detection rate of the targets in water column images. By comparison with other methods, the experimental results prove the validity and accuracy of the proposed method, and show potential applications of our method in the exploration and research on ocean resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分20
1秒前
1秒前
蝶衣发布了新的文献求助10
1秒前
1秒前
1秒前
羊羊羊发布了新的文献求助10
1秒前
星辰大海应助杨志坚采纳,获得10
1秒前
1秒前
Owen应助kmo采纳,获得10
3秒前
JAL完成签到,获得积分10
3秒前
进取拼搏发布了新的文献求助10
4秒前
4秒前
111发布了新的文献求助10
5秒前
SciGPT应助杜青采纳,获得10
5秒前
领导范儿应助茅十八采纳,获得10
6秒前
NexusExplorer应助w王采纳,获得10
8秒前
JAL发布了新的文献求助10
8秒前
乃惜发布了新的文献求助10
9秒前
10秒前
llxie完成签到,获得积分10
11秒前
123完成签到,获得积分10
11秒前
Jasper应助111采纳,获得10
12秒前
小二郎应助蔡小娜采纳,获得10
12秒前
情怀应助DDy10001采纳,获得10
13秒前
斯文败类应助明亮的香薇采纳,获得10
13秒前
14秒前
sky998524完成签到,获得积分10
14秒前
wuchang发布了新的文献求助10
15秒前
坚强幼晴发布了新的文献求助10
15秒前
SW冒险家完成签到 ,获得积分10
15秒前
小当家完成签到,获得积分10
16秒前
刻苦慕晴完成签到 ,获得积分10
16秒前
菘蓝泽蓼完成签到,获得积分10
17秒前
隐形曼青应助loong采纳,获得10
17秒前
Owen应助赵大虾采纳,获得10
17秒前
diaoyulao完成签到,获得积分10
18秒前
18秒前
万能图书馆应助w婷采纳,获得10
18秒前
深情安青应助MI采纳,获得10
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956566
求助须知:如何正确求助?哪些是违规求助? 3502673
关于积分的说明 11109597
捐赠科研通 3233488
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870674
科研通“疑难数据库(出版商)”最低求助积分说明 802143