Bubble Plume Target Detection Method of Multibeam Water Column Images Based on Bags of Visual Word Features

计算机科学 栏(排版) 人工智能 支持向量机 计算机视觉中的词袋模型 模式识别(心理学) 气泡 羽流 水柱 遥感 地质学 计算机视觉 图像(数学) 视觉文字 图像检索 并行计算 帧(网络) 物理 海洋学 热力学 电信
作者
Junxia Meng,Jianguo Yan,Jianhu Zhao
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (14): 3296-3296 被引量:6
标识
DOI:10.3390/rs14143296
摘要

Bubble plumes, as main manifestations of seabed gas leakage, play an important role in the exploration of natural gas hydrate and other resources. Multibeam water column images have been widely used in detecting bubble plume targets in recent years because they can wholly record water column and seabed backscatter strengths. However, strong noises in multibeam water column images cause many issues in target detection, and traditional target detection methods are mainly used in optical images and are less efficient for noise-affected sonar images. To improve the detection accuracy of bubble plume targets in water column images, this study proposes a target detection method based on the bag of visual words (BOVW) features and support vector machine (SVM) classifier. First, the characteristics of bubble plume targets in water column images are analyzed, with the conclusion that the BOVW features can well express the gray scale, texture, and shape characteristics of bubble plumes. Second, the BOVW features are constructed following steps of point description extraction, description clustering, and feature encoding. Third, the quadratic SVM classifier is used for the recognition of target images. Finally, a procedure of bubble plume target detection in water column images is described. In the experiment using the measured data in the Strait of Georgia, the proposed method achieved 98.6% recognition accuracy of bubble plume targets in validation sets, and 91.7% correct detection rate of the targets in water column images. By comparison with other methods, the experimental results prove the validity and accuracy of the proposed method, and show potential applications of our method in the exploration and research on ocean resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
科研通AI2S应助nanonamo采纳,获得10
3秒前
5秒前
废寝忘食完成签到,获得积分10
5秒前
斯文败类应助晓森采纳,获得10
5秒前
5秒前
Yxy完成签到 ,获得积分10
7秒前
Cinde发布了新的文献求助10
7秒前
鲤鱼鳞完成签到,获得积分10
8秒前
wangererer关注了科研通微信公众号
10秒前
诚心的醉卉完成签到 ,获得积分10
11秒前
12秒前
titamisulydia发布了新的文献求助10
13秒前
科研通AI2S应助nanonamo采纳,获得10
14秒前
酒九发布了新的文献求助10
18秒前
sadascaqwqw完成签到 ,获得积分10
18秒前
18秒前
19秒前
胖虎完成签到,获得积分10
22秒前
猫只想发布了新的文献求助10
23秒前
24秒前
小酸奶完成签到,获得积分10
28秒前
31秒前
小龙女完成签到 ,获得积分10
31秒前
34秒前
35秒前
Pefdixe发布了新的文献求助10
35秒前
科研通AI2S应助Rita采纳,获得10
38秒前
DawnySun发布了新的文献求助10
39秒前
火星上尔柳完成签到,获得积分10
40秒前
jar7989发布了新的文献求助10
40秒前
Singularity应助跳跃的海采纳,获得10
41秒前
哲别发布了新的文献求助10
41秒前
43秒前
44秒前
可爱的函函应助zhlh采纳,获得10
44秒前
47秒前
春暖花开发布了新的文献求助10
48秒前
shapvalue发布了新的文献求助10
50秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136088
求助须知:如何正确求助?哪些是违规求助? 2786988
关于积分的说明 7780038
捐赠科研通 2443085
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625262
版权声明 600870