Prediction-driven collaborative emergency medical resource allocation with deep learning and optimization

计算机科学 资源配置 运筹学 人工智能 学习迁移 人工神经网络 深度学习 资源(消歧) 最优化问题 传输(电信) 钥匙(锁) 机器学习 计算机安全 计算机网络 工程类 电信 算法
作者
Zhen-Yu Chen,Minghe Sun,Xi-Xi Han
出处
期刊:Journal of the Operational Research Society [Palgrave Macmillan]
卷期号:74 (2): 590-603 被引量:5
标识
DOI:10.1080/01605682.2022.2101953
摘要

This study addresses two key issues, ie, the "cold-start problem" in transmission prediction of new or rare epidemics and the collaborative allocation of emergency medical resources considering multiple objectives. These two issues have not yet been well addressed in data-driven emergency medical resource allocation systems. A decision support prediction-then-optimization framework combing deep learning and optimization is developed to address these two issues. Two transfer learning based convolutional neural network models are built for epidemic transmission predictions in the initial and the subsequent outbreak regions using transfer learning to deal with the "cold-start problem". A prediction-driven collaborative emergency medical resource allocation model is built to address the issue of collaborative decisions by simultaneously considering the inter- and intra-echelon resource flows in a multi-echelon system and considering the efficiency and fairness as the objective functions. A case study of the COVID-19 pandemic shows that combining transfer learning and convolutional neural networks can improve the performances of epidemic transmission predictions, and good predictions can improve both the efficiency and fairness of emergency medical resource allocation decisions. Moreover, the computational results show that the prediction errors are asymmetrically amplified in the optimization stage, and the shortage of the resource reserve quantity mediates the asymmetrical amplification effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
YR完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
hsiuf完成签到,获得积分10
13秒前
Zhao完成签到 ,获得积分10
13秒前
17秒前
Lrcx完成签到 ,获得积分10
23秒前
23秒前
一株多肉完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
26秒前
zhang完成签到 ,获得积分10
27秒前
浮游应助明理问柳采纳,获得10
32秒前
32秒前
33秒前
峰成完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
35秒前
35秒前
35秒前
chenyan完成签到,获得积分0
40秒前
库库发布了新的文献求助10
40秒前
ableyy完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
43秒前
Skywalk满天星完成签到,获得积分10
47秒前
量子星尘发布了新的文献求助10
51秒前
研学弟完成签到,获得积分10
52秒前
大团长完成签到,获得积分10
55秒前
Lilian完成签到,获得积分10
57秒前
申燕婷完成签到 ,获得积分10
59秒前
易止完成签到 ,获得积分10
1分钟前
baoxiaozhai完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
liaomr完成签到 ,获得积分10
1分钟前
雨前知了完成签到,获得积分10
1分钟前
我要读博士完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612966
求助须知:如何正确求助?哪些是违规求助? 4017956
关于积分的说明 12436915
捐赠科研通 3700270
什么是DOI,文献DOI怎么找? 2040657
邀请新用户注册赠送积分活动 1073414
科研通“疑难数据库(出版商)”最低求助积分说明 957049