Prediction-driven collaborative emergency medical resource allocation with deep learning and optimization

计算机科学 资源配置 运筹学 人工智能 学习迁移 人工神经网络 深度学习 资源(消歧) 最优化问题 传输(电信) 钥匙(锁) 机器学习 计算机安全 计算机网络 工程类 电信 算法
作者
Zhen-Yu Chen,Minghe Sun,Xi-Xi Han
出处
期刊:Journal of the Operational Research Society [Palgrave Macmillan]
卷期号:74 (2): 590-603 被引量:5
标识
DOI:10.1080/01605682.2022.2101953
摘要

This study addresses two key issues, ie, the "cold-start problem" in transmission prediction of new or rare epidemics and the collaborative allocation of emergency medical resources considering multiple objectives. These two issues have not yet been well addressed in data-driven emergency medical resource allocation systems. A decision support prediction-then-optimization framework combing deep learning and optimization is developed to address these two issues. Two transfer learning based convolutional neural network models are built for epidemic transmission predictions in the initial and the subsequent outbreak regions using transfer learning to deal with the "cold-start problem". A prediction-driven collaborative emergency medical resource allocation model is built to address the issue of collaborative decisions by simultaneously considering the inter- and intra-echelon resource flows in a multi-echelon system and considering the efficiency and fairness as the objective functions. A case study of the COVID-19 pandemic shows that combining transfer learning and convolutional neural networks can improve the performances of epidemic transmission predictions, and good predictions can improve both the efficiency and fairness of emergency medical resource allocation decisions. Moreover, the computational results show that the prediction errors are asymmetrically amplified in the optimization stage, and the shortage of the resource reserve quantity mediates the asymmetrical amplification effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ying发布了新的文献求助10
1秒前
grc发布了新的文献求助10
2秒前
隐形的钢笔完成签到,获得积分20
2秒前
Lucas应助怡然的忆之采纳,获得30
2秒前
2秒前
所所应助包容的人生采纳,获得10
2秒前
长风完成签到,获得积分10
3秒前
56发布了新的文献求助10
3秒前
zgnb发布了新的文献求助10
3秒前
louge完成签到,获得积分10
3秒前
4秒前
一首最美丽的感情完成签到,获得积分10
4秒前
善学以致用应助wuyu采纳,获得10
5秒前
5秒前
千冬完成签到,获得积分10
5秒前
善学以致用应助perdgs采纳,获得10
5秒前
6秒前
8秒前
Dinglin发布了新的文献求助10
10秒前
日不落发布了新的文献求助10
11秒前
momo发布了新的文献求助10
11秒前
12秒前
罗颂子发布了新的文献求助10
13秒前
14秒前
一轮明月完成签到 ,获得积分10
15秒前
perdgs发布了新的文献求助10
15秒前
16秒前
16秒前
Siliang完成签到,获得积分10
16秒前
17秒前
17秒前
淬h完成签到,获得积分10
18秒前
聪明的远锋完成签到,获得积分10
18秒前
科研通AI5应助momo采纳,获得10
18秒前
所所应助常尽欢采纳,获得10
20秒前
zfzf0422完成签到 ,获得积分10
21秒前
21秒前
AATRAHASIS完成签到,获得积分10
23秒前
一只小小发布了新的文献求助30
23秒前
沙111完成签到 ,获得积分10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737713
求助须知:如何正确求助?哪些是违规求助? 3281328
关于积分的说明 10024815
捐赠科研通 2998078
什么是DOI,文献DOI怎么找? 1645034
邀请新用户注册赠送积分活动 782506
科研通“疑难数据库(出版商)”最低求助积分说明 749814