Prediction-driven collaborative emergency medical resource allocation with deep learning and optimization

计算机科学 资源配置 运筹学 人工智能 学习迁移 人工神经网络 深度学习 资源(消歧) 最优化问题 传输(电信) 钥匙(锁) 机器学习 计算机安全 计算机网络 工程类 电信 算法
作者
Zhen-Yu Chen,Minghe Sun,Xi-Xi Han
出处
期刊:Journal of the Operational Research Society [Informa]
卷期号:74 (2): 590-603 被引量:5
标识
DOI:10.1080/01605682.2022.2101953
摘要

This study addresses two key issues, ie, the "cold-start problem" in transmission prediction of new or rare epidemics and the collaborative allocation of emergency medical resources considering multiple objectives. These two issues have not yet been well addressed in data-driven emergency medical resource allocation systems. A decision support prediction-then-optimization framework combing deep learning and optimization is developed to address these two issues. Two transfer learning based convolutional neural network models are built for epidemic transmission predictions in the initial and the subsequent outbreak regions using transfer learning to deal with the "cold-start problem". A prediction-driven collaborative emergency medical resource allocation model is built to address the issue of collaborative decisions by simultaneously considering the inter- and intra-echelon resource flows in a multi-echelon system and considering the efficiency and fairness as the objective functions. A case study of the COVID-19 pandemic shows that combining transfer learning and convolutional neural networks can improve the performances of epidemic transmission predictions, and good predictions can improve both the efficiency and fairness of emergency medical resource allocation decisions. Moreover, the computational results show that the prediction errors are asymmetrically amplified in the optimization stage, and the shortage of the resource reserve quantity mediates the asymmetrical amplification effect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助落寞灵安采纳,获得10
刚刚
Yoyo完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
小瑶发布了新的文献求助20
2秒前
2秒前
lJH完成签到,获得积分10
2秒前
ymxlcfc发布了新的文献求助10
3秒前
苏苏发布了新的文献求助10
3秒前
Tony发布了新的文献求助10
3秒前
听雨发布了新的文献求助10
4秒前
飘逸平蝶发布了新的文献求助10
4秒前
icui完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
何yezi完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
研友_VZG7GZ应助学术垃圾采纳,获得30
6秒前
李健的粉丝团团长应助tly采纳,获得10
6秒前
康康发布了新的文献求助10
6秒前
7秒前
小二郎应助翟淑雨采纳,获得10
7秒前
烟花应助sfwer采纳,获得10
7秒前
icui发布了新的文献求助10
7秒前
NexusExplorer应助cwj采纳,获得10
7秒前
研友_VZG7GZ应助two采纳,获得10
7秒前
8秒前
9秒前
小蘑菇应助中杯西瓜冰采纳,获得10
9秒前
9秒前
仇文琪发布了新的文献求助30
9秒前
落寞灵安发布了新的文献求助10
10秒前
11秒前
酷波er应助乐观的元霜采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578435
求助须知:如何正确求助?哪些是违规求助? 4663226
关于积分的说明 14745504
捐赠科研通 4604000
什么是DOI,文献DOI怎么找? 2526820
邀请新用户注册赠送积分活动 1496380
关于科研通互助平台的介绍 1465718