Deep Adaptively-Enhanced Hashing With Discriminative Similarity Guidance for Unsupervised Cross-Modal Retrieval

散列函数 通用哈希 动态完美哈希 计算机科学 判别式 人工智能 相似性(几何) 特征哈希 局部敏感散列 水准点(测量) 双重哈希 模式识别(心理学) 汉明空间 最近邻搜索 数据挖掘 哈希表 算法 汉明码 图像(数学) 计算机安全 解码方法 大地测量学 地理 区块代码
作者
Yufeng Shi,Yue Zhao,Xin Liu,Feng Zheng,Weihua Ou,Xinge You,Qinmu Peng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 7255-7268 被引量:49
标识
DOI:10.1109/tcsvt.2022.3172716
摘要

Cross-modal hashing that leverages hash functions to project high-dimensional data from different modalities into the compact common hamming space, has shown immeasurable potential in cross-modal retrieval. To ease labor costs, unsupervised cross-modal hashing methods are proposed. However, existing unsupervised methods still suffer from two factors in the optimization of hash functions: 1) similarity guidance, they barely give a clear definition of whether is similar or not between data points, leading to the residual of the redundant information; 2) optimization strategy, they ignore the fact that the similarity learning abilities of different hash functions are different, which makes the hash function of one modality weaker than the hash function of the other modality. To alleviate such limitations, this paper proposes an unsupervised cross-modal hashing method to train hash functions with discriminative similarity guidance and adaptively-enhanced optimization strategy, termed Deep Adaptively-Enhanced Hashing (DAEH). Specifically, to estimate the similarity relations with discriminability, Information Mixed Similarity Estimation (IMSE) is designed by integrating information from distance distributions and the similarity ratio. Moreover, Adaptive Teacher Guided Enhancement (ATGE) optimization strategy is also designed, which employs information theory to discover the weaker hash function and utilizes an extra teacher network to enhance it. Extensive experiments on three benchmark datasets demonstrate the superiority of the proposed DAEH against the state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玲玲发布了新的文献求助10
刚刚
2秒前
pixiu发布了新的文献求助20
3秒前
上官若男应助自由的雪采纳,获得30
3秒前
lth完成签到 ,获得积分10
5秒前
英俊的铭应助学勾巴采纳,获得10
5秒前
李爱国应助是小杨啊采纳,获得10
5秒前
ZTT发布了新的文献求助10
6秒前
赘婿应助六六采纳,获得10
7秒前
xuxuxu发布了新的文献求助10
7秒前
7秒前
zho关闭了zho文献求助
7秒前
醉爱天下完成签到,获得积分10
7秒前
dalibaba发布了新的文献求助10
8秒前
桐桐应助柚子哈密瓜采纳,获得10
10秒前
冯晓静发布了新的文献求助10
10秒前
陈祥薇完成签到,获得积分10
10秒前
慕青应助秋秋秋采纳,获得10
10秒前
Jasper应助Puokn采纳,获得10
11秒前
11秒前
13秒前
月落杉松晚完成签到,获得积分10
14秒前
小赵童鞋完成签到,获得积分10
14秒前
ZTT完成签到,获得积分10
14秒前
NexusExplorer应助jjamazing采纳,获得10
15秒前
windtalker完成签到,获得积分20
16秒前
雄少侠发布了新的文献求助50
16秒前
大个应助是小杨啊采纳,获得10
17秒前
17秒前
xrl发布了新的文献求助10
17秒前
18秒前
可唔可唔完成签到 ,获得积分10
19秒前
IF为0发布了新的文献求助10
19秒前
六六发布了新的文献求助10
21秒前
ljj完成签到,获得积分10
21秒前
哈密瓜完成签到,获得积分10
21秒前
22秒前
田様应助哇哈采纳,获得10
22秒前
24秒前
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228778
求助须知:如何正确求助?哪些是违规求助? 2876528
关于积分的说明 8195549
捐赠科研通 2543815
什么是DOI,文献DOI怎么找? 1374031
科研通“疑难数据库(出版商)”最低求助积分说明 646872
邀请新用户注册赠送积分活动 621506