Deep Adaptively-Enhanced Hashing With Discriminative Similarity Guidance for Unsupervised Cross-Modal Retrieval

散列函数 通用哈希 动态完美哈希 计算机科学 判别式 人工智能 相似性(几何) 特征哈希 局部敏感散列 水准点(测量) 双重哈希 模式识别(心理学) 汉明空间 最近邻搜索 数据挖掘 哈希表 算法 汉明码 图像(数学) 解码方法 计算机安全 区块代码 大地测量学 地理
作者
Yufeng Shi,Yue Zhao,Xin Liu,Feng Zheng,Weihua Ou,Xinge You,Qinmu Peng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 7255-7268 被引量:49
标识
DOI:10.1109/tcsvt.2022.3172716
摘要

Cross-modal hashing that leverages hash functions to project high-dimensional data from different modalities into the compact common hamming space, has shown immeasurable potential in cross-modal retrieval. To ease labor costs, unsupervised cross-modal hashing methods are proposed. However, existing unsupervised methods still suffer from two factors in the optimization of hash functions: 1) similarity guidance, they barely give a clear definition of whether is similar or not between data points, leading to the residual of the redundant information; 2) optimization strategy, they ignore the fact that the similarity learning abilities of different hash functions are different, which makes the hash function of one modality weaker than the hash function of the other modality. To alleviate such limitations, this paper proposes an unsupervised cross-modal hashing method to train hash functions with discriminative similarity guidance and adaptively-enhanced optimization strategy, termed Deep Adaptively-Enhanced Hashing (DAEH). Specifically, to estimate the similarity relations with discriminability, Information Mixed Similarity Estimation (IMSE) is designed by integrating information from distance distributions and the similarity ratio. Moreover, Adaptive Teacher Guided Enhancement (ATGE) optimization strategy is also designed, which employs information theory to discover the weaker hash function and utilizes an extra teacher network to enhance it. Extensive experiments on three benchmark datasets demonstrate the superiority of the proposed DAEH against the state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
可爱的函函应助yulia采纳,获得10
1秒前
刘莹发布了新的文献求助10
1秒前
1秒前
陈嘉嘉完成签到,获得积分10
1秒前
科研通AI6应助木南采纳,获得10
1秒前
科研通AI6应助kk采纳,获得10
1秒前
科研通AI6应助kk采纳,获得10
1秒前
852应助kk采纳,获得10
1秒前
科研通AI5应助kk采纳,获得10
1秒前
科研通AI5应助kk采纳,获得10
1秒前
科研通AI5应助kk采纳,获得10
2秒前
科研通AI6应助kk采纳,获得10
2秒前
科研通AI6应助kk采纳,获得10
2秒前
我是老大应助结实问兰采纳,获得50
2秒前
起床做核酸完成签到,获得积分10
3秒前
3秒前
Owen应助xcc采纳,获得10
3秒前
李牧发布了新的文献求助10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
Maestro_S应助科研通管家采纳,获得30
4秒前
丘比特应助qiqi采纳,获得10
5秒前
5秒前
打打应助科研通管家采纳,获得30
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4605158
求助须知:如何正确求助?哪些是违规求助? 4013165
关于积分的说明 12426474
捐赠科研通 3693780
什么是DOI,文献DOI怎么找? 2036677
邀请新用户注册赠送积分活动 1069608
科研通“疑难数据库(出版商)”最低求助积分说明 953961