An explainable XGBoost model improved by SMOTE-ENN technique for maize lodging detection based on multi-source unmanned aerial vehicle images

过采样 人工智能 计算机科学 鉴定(生物学) 模式识别(心理学) 机器学习 遥感 地理 计算机网络 植物 生物 带宽(计算)
作者
Liang Han,Guijun Yang,Xiaodong Yang,Xiaoyu Song,Bo Xu,Zhenhai Li,Jintao Wu,Hao Yang,Jian Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106804-106804 被引量:41
标识
DOI:10.1016/j.compag.2022.106804
摘要

Remote sensing image is becoming an increasingly popular tool for crop lodging detection because it conveniently provides features for building machine learning models and predicting lodging. However, difficulties in interpreting machine learning models and their predictions limit the confidence of using remote sensing images to detect lodging. In addition, the lodging datasets used for modeling are difficult to balance under natural conditions. Designing a robust and interpretable classification model for the detection of lodging in an imbalanced distribution dataset poses a particularly difficult challenge. In this study, visible and multi-spectral images were collected with a UAV to extract relevant features from remote sensing images. In a preliminary step, Synthetic Minority Oversampling Technique (SMOTE) and Edited Nearest Neighbors (ENN) method were used to treat imbalanced datasets. The SMOTE-ENN-XGBoost model is proposed for the efficient identification of maize lodging at the plot scale. The SMOTE-ENN-XGBoost model achieved an F1-score of 0.930 and a recall of 0.899 on a testing set, suggesting that it can be used for modeling lodging detection. Additionally, the SHapley Additive exPlanations (SHAP) approach was employed to interpret the identification and prioritization of features that determine lodging classification and activity prediction. The results showed that canopy structure and textural features are relatively stable compared with spectral features, which are susceptible to the external environment when modeling is employed to detect lodging. This work also showed that canopy structural, spectral, and textural information should be considered simultaneously rather than separately when detecting crop lodging in a crop breeding program in order to prevent differences in expression controlled by the interaction between genotype and environment obscuring the change in a single feature before and after lodging. For practical applications of machine learning models in crop lodging detection, such insights are of critical relevance. Taken together, the results of this study encourage further applications of remote sensing techniques to build interpretable machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨山芙完成签到 ,获得积分10
刚刚
王大卫完成签到,获得积分10
刚刚
Pheonix1998完成签到,获得积分10
刚刚
我是老大应助咸蛋超人采纳,获得10
1秒前
zrt完成签到,获得积分10
1秒前
儒雅的焦完成签到 ,获得积分10
2秒前
Hubert发布了新的文献求助200
3秒前
那时花开应助赵十一采纳,获得10
3秒前
宋浩奇完成签到 ,获得积分10
4秒前
追寻的问玉完成签到 ,获得积分10
4秒前
hujin发布了新的文献求助10
5秒前
xmz完成签到,获得积分10
5秒前
xiaoqin完成签到,获得积分10
5秒前
5秒前
吉祥如意完成签到,获得积分10
5秒前
11马完成签到,获得积分10
5秒前
5秒前
7秒前
xmz发布了新的文献求助10
7秒前
初一完成签到 ,获得积分10
9秒前
sailor完成签到 ,获得积分10
10秒前
君莫笑完成签到,获得积分10
10秒前
mouxq发布了新的文献求助10
10秒前
wzz完成签到,获得积分10
10秒前
Darline完成签到 ,获得积分10
10秒前
乔树伟完成签到,获得积分10
11秒前
华风完成签到,获得积分10
12秒前
飞白发布了新的文献求助10
13秒前
14秒前
15秒前
咸蛋超人完成签到,获得积分10
15秒前
利涉大川发布了新的文献求助10
15秒前
乐乐应助lqtnb采纳,获得10
16秒前
Vicky完成签到,获得积分10
17秒前
17秒前
典雅的盼山完成签到,获得积分10
18秒前
无名完成签到,获得积分10
19秒前
香香蛋堡发布了新的文献求助10
19秒前
福泽聚宝象完成签到,获得积分10
19秒前
健忘芷完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295242
求助须知:如何正确求助?哪些是违规求助? 4444776
关于积分的说明 13834634
捐赠科研通 4329086
什么是DOI,文献DOI怎么找? 2376526
邀请新用户注册赠送积分活动 1371792
关于科研通互助平台的介绍 1337058