An explainable XGBoost model improved by SMOTE-ENN technique for maize lodging detection based on multi-source unmanned aerial vehicle images

过采样 人工智能 计算机科学 鉴定(生物学) 模式识别(心理学) 机器学习 遥感 地理 计算机网络 植物 生物 带宽(计算)
作者
Liang Han,Guijun Yang,Xiaodong Yang,Xiaoyu Song,Bo Xu,Zhenhai Li,Jintao Wu,Hao Yang,Jian Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:194: 106804-106804 被引量:41
标识
DOI:10.1016/j.compag.2022.106804
摘要

Remote sensing image is becoming an increasingly popular tool for crop lodging detection because it conveniently provides features for building machine learning models and predicting lodging. However, difficulties in interpreting machine learning models and their predictions limit the confidence of using remote sensing images to detect lodging. In addition, the lodging datasets used for modeling are difficult to balance under natural conditions. Designing a robust and interpretable classification model for the detection of lodging in an imbalanced distribution dataset poses a particularly difficult challenge. In this study, visible and multi-spectral images were collected with a UAV to extract relevant features from remote sensing images. In a preliminary step, Synthetic Minority Oversampling Technique (SMOTE) and Edited Nearest Neighbors (ENN) method were used to treat imbalanced datasets. The SMOTE-ENN-XGBoost model is proposed for the efficient identification of maize lodging at the plot scale. The SMOTE-ENN-XGBoost model achieved an F1-score of 0.930 and a recall of 0.899 on a testing set, suggesting that it can be used for modeling lodging detection. Additionally, the SHapley Additive exPlanations (SHAP) approach was employed to interpret the identification and prioritization of features that determine lodging classification and activity prediction. The results showed that canopy structure and textural features are relatively stable compared with spectral features, which are susceptible to the external environment when modeling is employed to detect lodging. This work also showed that canopy structural, spectral, and textural information should be considered simultaneously rather than separately when detecting crop lodging in a crop breeding program in order to prevent differences in expression controlled by the interaction between genotype and environment obscuring the change in a single feature before and after lodging. For practical applications of machine learning models in crop lodging detection, such insights are of critical relevance. Taken together, the results of this study encourage further applications of remote sensing techniques to build interpretable machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太上老君完成签到,获得积分10
1秒前
重要墨镜完成签到,获得积分10
1秒前
zzzhhh发布了新的文献求助10
1秒前
2秒前
jin完成签到,获得积分10
3秒前
wxq发布了新的文献求助10
4秒前
土豆完成签到 ,获得积分10
5秒前
djbj2022发布了新的文献求助10
6秒前
6秒前
阿南完成签到 ,获得积分10
7秒前
整齐荟发布了新的文献求助10
10秒前
研友_VZG7GZ应助个别采纳,获得10
18秒前
CipherSage应助温暖白容采纳,获得10
18秒前
zzzhhh完成签到,获得积分10
18秒前
123发布了新的文献求助10
19秒前
香蕉觅云应助开放的悟空采纳,获得10
21秒前
XFF完成签到,获得积分10
21秒前
羊羊羊完成签到,获得积分10
22秒前
22秒前
26秒前
时尚幻莲完成签到,获得积分10
26秒前
积极的香菇完成签到 ,获得积分10
28秒前
LDB完成签到,获得积分20
31秒前
iNk应助wxq采纳,获得10
32秒前
松谦发布了新的文献求助30
32秒前
giao完成签到,获得积分10
33秒前
无尘发布了新的文献求助20
34秒前
猪猪hero应助LDB采纳,获得10
36秒前
fan完成签到 ,获得积分10
36秒前
忆之完成签到,获得积分10
36秒前
cnkly完成签到,获得积分10
37秒前
wsazah完成签到,获得积分10
37秒前
38秒前
binbin完成签到,获得积分10
39秒前
LI完成签到 ,获得积分10
39秒前
coster完成签到,获得积分10
41秒前
Foliage发布了新的文献求助10
43秒前
44秒前
巴斯光年发布了新的文献求助10
48秒前
49秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578