亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An explainable XGBoost model improved by SMOTE-ENN technique for maize lodging detection based on multi-source unmanned aerial vehicle images

过采样 人工智能 计算机科学 鉴定(生物学) 模式识别(心理学) 机器学习 遥感 地理 计算机网络 植物 生物 带宽(计算)
作者
Liang Han,Guijun Yang,Xiaodong Yang,Xiaoyu Song,Bo Xu,Zhenhai Li,Jintao Wu,Hao Yang,Jian Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106804-106804 被引量:41
标识
DOI:10.1016/j.compag.2022.106804
摘要

Remote sensing image is becoming an increasingly popular tool for crop lodging detection because it conveniently provides features for building machine learning models and predicting lodging. However, difficulties in interpreting machine learning models and their predictions limit the confidence of using remote sensing images to detect lodging. In addition, the lodging datasets used for modeling are difficult to balance under natural conditions. Designing a robust and interpretable classification model for the detection of lodging in an imbalanced distribution dataset poses a particularly difficult challenge. In this study, visible and multi-spectral images were collected with a UAV to extract relevant features from remote sensing images. In a preliminary step, Synthetic Minority Oversampling Technique (SMOTE) and Edited Nearest Neighbors (ENN) method were used to treat imbalanced datasets. The SMOTE-ENN-XGBoost model is proposed for the efficient identification of maize lodging at the plot scale. The SMOTE-ENN-XGBoost model achieved an F1-score of 0.930 and a recall of 0.899 on a testing set, suggesting that it can be used for modeling lodging detection. Additionally, the SHapley Additive exPlanations (SHAP) approach was employed to interpret the identification and prioritization of features that determine lodging classification and activity prediction. The results showed that canopy structure and textural features are relatively stable compared with spectral features, which are susceptible to the external environment when modeling is employed to detect lodging. This work also showed that canopy structural, spectral, and textural information should be considered simultaneously rather than separately when detecting crop lodging in a crop breeding program in order to prevent differences in expression controlled by the interaction between genotype and environment obscuring the change in a single feature before and after lodging. For practical applications of machine learning models in crop lodging detection, such insights are of critical relevance. Taken together, the results of this study encourage further applications of remote sensing techniques to build interpretable machine learning models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饼子完成签到 ,获得积分10
2秒前
callmekar发布了新的文献求助30
12秒前
DChen完成签到,获得积分10
35秒前
56秒前
xiaolang2004完成签到,获得积分10
57秒前
牛角面包发布了新的文献求助10
1分钟前
淙淙柔水完成签到,获得积分0
1分钟前
快乐小狗发布了新的文献求助100
1分钟前
爪巴完成签到,获得积分10
1分钟前
牛角面包完成签到,获得积分10
1分钟前
1分钟前
爪巴发布了新的文献求助10
1分钟前
2分钟前
呜呜吴发布了新的文献求助10
2分钟前
hiu发布了新的文献求助10
2分钟前
诚心的松柏完成签到,获得积分10
2分钟前
3分钟前
3分钟前
zyx发布了新的文献求助10
3分钟前
aq22完成签到 ,获得积分10
3分钟前
快乐小狗发布了新的文献求助10
3分钟前
3分钟前
fgh完成签到 ,获得积分10
3分钟前
李爱国应助古德里安鸭子采纳,获得10
3分钟前
子曰发布了新的文献求助10
3分钟前
思源应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
充电宝应助古德里安鸭子采纳,获得10
4分钟前
5分钟前
Yi完成签到,获得积分10
5分钟前
深深发布了新的文献求助10
5分钟前
5分钟前
深深完成签到,获得积分20
5分钟前
5分钟前
昏睡的蟠桃应助深深采纳,获得30
5分钟前
shuyi_liu发布了新的文献求助10
5分钟前
紧张的书文完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515838
求助须知:如何正确求助?哪些是违规求助? 4609107
关于积分的说明 14514451
捐赠科研通 4545619
什么是DOI,文献DOI怎么找? 2490746
邀请新用户注册赠送积分活动 1472648
关于科研通互助平台的介绍 1444358