Developing extreme fast charge battery protocols – A review spanning materials to systems

电池(电) 计算机科学 协议(科学) 实施 使用寿命 钥匙(锁) 可靠性工程 电气工程 工程类 计算机安全 医学 物理 量子力学 病理 功率(物理) 程序设计语言 替代医学
作者
Eric J. Dufek,Daniel P. Abraham,Ira Bloom,Bor‐Rong Chen,Parameswara Rao Chinnam,Andrew M. Colclasure,Kevin L. Gering,Matthew Keyser,Sang‐Wook Kim,Weijie Mai,David Robertson,Marco‐Tulio F. Rodrigues,Kandler Smith,Tanvir R. Tanim,Francois L. E. Usseglio‐Viretta,Peter J. Weddle
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:526: 231129-231129 被引量:50
标识
DOI:10.1016/j.jpowsour.2022.231129
摘要

Extreme fast charging (XFC) has become a focal research point in the lithium-battery community over the last several years. As adoption of electric vehicles increases, fast charging has become a key driver in enhancing consumer recharge experience. Recently, the research community has made significant improvements in developing charge protocols to support XFC. New charge protocol designs derived using a combination of advanced, physically derived models, and electrochemical and secondary characterization methods, increase charge acceptance and decrease aging. By coordinating these methods and modifying protocols to account for different material constraints, including lithium plating and cathode particle degradation, novel charge protocols have increased the energy accepted during charging by over 25% in 10 min and increased the charge acceptance prior to a constant-voltage step by approximately 3x. Here, we review several charge-protocol advances, aging factors which are enhanced by XFC and advances which will enable adoption of XFC capable vehicles. These advances include implementing machine learning and other detection algorithms to reduce and classify lithium plating, which is known to significantly degrade cell performance and reduce cell life. The review concludes by discussing full-system fast charge requirements, including electric vehicle service equipment needs for implementing XFC protocols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大大完成签到,获得积分10
2秒前
2秒前
2秒前
Xiaoxiao应助greenPASS666采纳,获得10
2秒前
现代的秋白完成签到,获得积分10
2秒前
从容的盼晴完成签到,获得积分10
2秒前
scvrl完成签到,获得积分10
3秒前
3秒前
楼寒天发布了新的文献求助10
3秒前
请叫我风吹麦浪应助C2采纳,获得10
5秒前
xlj发布了新的文献求助10
5秒前
5秒前
迷路白桃完成签到,获得积分10
6秒前
kento发布了新的文献求助30
6秒前
眯眯眼的衬衫应助yKkkkkk采纳,获得10
6秒前
小豆包科研冲刺者完成签到,获得积分10
6秒前
黄饱饱完成签到,获得积分10
7秒前
7秒前
传奇3应助CO2采纳,获得10
8秒前
9秒前
称心乐枫完成签到,获得积分10
10秒前
10秒前
22发布了新的文献求助10
10秒前
berry发布了新的文献求助10
10秒前
kingmin应助毛慢慢采纳,获得10
11秒前
完美世界应助顺利鱼采纳,获得10
12秒前
搜集达人应助招财不肥采纳,获得10
13秒前
sweetbearm应助李秋静采纳,获得10
13秒前
Michael_li完成签到,获得积分10
13秒前
whs完成签到,获得积分10
15秒前
科研通AI5应助xlj采纳,获得10
16秒前
再干一杯发布了新的文献求助10
16秒前
17秒前
满意的天完成签到 ,获得积分10
17秒前
luoshiwen完成签到,获得积分10
17秒前
落寞的觅柔完成签到,获得积分10
19秒前
20秒前
LUNWENREQUEST发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808