An improved YOLOv5 model based on visual attention mechanism: Application to recognition of tomato virus disease

过度拟合 卷积神经网络 人工智能 计算机科学 一般化 模式识别(心理学) 机制(生物学) 人工神经网络 网络模型 集合(抽象数据类型) 试验装置 钥匙(锁) 计算机视觉 数学 哲学 数学分析 认识论 计算机安全 程序设计语言
作者
Jiangtao Qi,Xiangnan Liu,Kai Liu,Farong Xu,Guo Hui,Xinliang Tian,Mao Li,Zhiyuan Bao,Yang Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:194: 106780-106780 被引量:247
标识
DOI:10.1016/j.compag.2022.106780
摘要

• A deep learning model based on attention mechanism is proposed for tomato virus disease recognition. • The recognition accuracy is improved while maintaining the same detection speed. • It provides technical support for other researches related to plant disease recognition. Traditional target detection methods cannot effectively screen key features, which leads to overfitting and produces a model with a weak generalization ability. In this paper, an improved SE-YOLOv5 network model is proposed for the recognition of tomato virus diseases. Images of tomato diseases in greenhouses were collected using a mobile phone, and the collected images were expanded. A squeeze-and-excitation (SE) module was added to a YOLOv5 model to realize the extraction of key features, using a human visual attention mechanism for reference. The trained network model was evaluated on the test set of tomato virus diseases. The accuracy was 91.07%, which was 7.12%, 17.85% and 8.91% higher than that of the Faster regions with convolutional neural network features (R-CNN) model, single-shot multiBox detector (SSD) model and YOLOv5 model, respectively. Meanwhile, the mean average precision (mAP @0.5 ) was 94.10%, which was 1.23%, 16.77% and 1.78% higher than that of the Faster R-CNN model, SSD model and YOLOv5 model. The proposed SE-YOLOv5 model can effectively detect regions of tomato virus disease, which provides disease identification and control theoretical research and technical support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slr发布了新的文献求助10
刚刚
freeaway完成签到 ,获得积分10
刚刚
刚刚
1秒前
俊秀的卿发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
8R60d8应助xiaosu采纳,获得10
4秒前
liii发布了新的文献求助10
5秒前
momo发布了新的文献求助10
6秒前
赘婿应助Fengliguantou采纳,获得10
8秒前
不安的紫翠完成签到,获得积分10
10秒前
魁梧的鲂完成签到,获得积分10
11秒前
13秒前
华仔应助momo采纳,获得10
13秒前
隐形的糖豆完成签到,获得积分10
14秒前
qjq琪完成签到 ,获得积分10
14秒前
15秒前
16秒前
魁梧的鲂发布了新的文献求助10
17秒前
17秒前
18秒前
Lucas应助ysy采纳,获得10
19秒前
诚心的扬完成签到 ,获得积分10
19秒前
苗条梦玉发布了新的文献求助10
20秒前
cjdsb发布了新的文献求助10
20秒前
传奇3应助奋斗夏烟采纳,获得10
21秒前
22秒前
脑洞疼应助LW采纳,获得30
22秒前
25秒前
26秒前
妮妮完成签到,获得积分10
26秒前
28秒前
mmm发布了新的文献求助10
29秒前
ding应助科研通管家采纳,获得10
29秒前
bkagyin应助科研通管家采纳,获得10
29秒前
科目三应助科研通管家采纳,获得10
29秒前
SciGPT应助科研通管家采纳,获得10
29秒前
地表飞猪应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
地表飞猪应助科研通管家采纳,获得10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173