An improved equivalent capacitance model of the triboelectric nanogenerator incorporating its surface roughness

摩擦电效应 电容 纳米发生器 材料科学 等效电路 表面粗糙度 静电感应 电压 表面光洁度 接触带电 机械 电气工程 物理 复合材料 工程类 量子力学 电极
作者
Jian Wen,Hailong He,Chunping Niu,Mingzhe Rong,HUANG Yan-Qin,Yi Wu
出处
期刊:Nano Energy [Elsevier BV]
卷期号:96: 107070-107070 被引量:27
标识
DOI:10.1016/j.nanoen.2022.107070
摘要

Triboelectric nanogenerator (TENG) is a kind of device that generates electric energy in the external circuit through contact electrification and electrostatic induction. Recently, although the development of TENG applications is accelerating, the development of TENG fundamental theoretical model is relatively slow. At present, the latest TENG model has considered the distance-dependent and load-dependent and can better predict the open-circuit voltage. However, the TENG model considering the effect of surface roughness on capacitance has not been introduced yet, which may underestimate the equivalent capacitance of TENG, resulting in the underestimate of outputs such as short-circuit current. Here, A TENG model considering the effect of surface roughness on capacitance is established for the first time. Based on the established load-dependent model, the effect of surface roughness on TENG capacitance is analyzed by the Greenwood-Williamson model to determine a more accurate TENG equivalent capacitance. Compared with the load-dependent model without considering effect of surface roughness on capacitance, our model can better predict the outputs such as short-circuit current and transferred charge. The experimental results show that after considering the effect of surface roughness on capacitance, the average relative error between the calculated and measured results of the equivalent capacitance decreases from 47.47% to 11.41%, which is about 1/4 of the original error. Whether it is distance-dependent or load-dependent, the model can better predict the performance of TENG. The model in this paper provides a more comprehensive understanding of the working principle of TENG and more accurate output trend prediction, which can help to design a more efficient TENG device.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fmd123发布了新的文献求助10
1秒前
可爱的函函应助sonder采纳,获得10
1秒前
2秒前
xingyi发布了新的文献求助10
2秒前
祖f完成签到,获得积分10
3秒前
ChengYonghui完成签到,获得积分10
3秒前
所所应助kkk采纳,获得10
3秒前
3秒前
boltos完成签到,获得积分10
3秒前
彭于彦祖应助liars采纳,获得30
4秒前
4秒前
范范范发布了新的文献求助10
5秒前
脑洞疼应助qweasdzxcqwe采纳,获得30
5秒前
5秒前
思苇完成签到,获得积分10
5秒前
6秒前
飘逸秋荷发布了新的文献求助10
6秒前
lw发布了新的文献求助10
7秒前
7秒前
简单酸奶完成签到,获得积分10
8秒前
8秒前
dddd完成签到,获得积分10
8秒前
林小雨完成签到,获得积分10
8秒前
a水爱科研完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
干脆苹果发布了新的文献求助10
9秒前
9秒前
乐观囧发布了新的文献求助10
9秒前
9秒前
Jaho完成签到,获得积分10
9秒前
sci完成签到 ,获得积分10
10秒前
Oyster发布了新的文献求助30
11秒前
北珏完成签到,获得积分10
12秒前
12秒前
12秒前
叶子发布了新的文献求助10
12秒前
Jiali发布了新的文献求助20
13秒前
赵文若完成签到,获得积分10
14秒前
accpeted完成签到,获得积分10
14秒前
俗人发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600