Multi-objective multi-criteria evolutionary algorithm for multi-objective multi-task optimization

进化算法 计算机科学 选择(遗传算法) 任务(项目管理) 进化计算 人口 多目标优化 计算智能 进化规划 人工智能 机器学习 工程类 社会学 人口学 系统工程
作者
Ke-Jing Du,Jian-Yu Li,Hua Wang,Jun Zhang
出处
期刊:Complex & Intelligent Systems 卷期号:9 (2): 1211-1228 被引量:20
标识
DOI:10.1007/s40747-022-00650-8
摘要

Abstract Evolutionary multi-objective multi-task optimization is an emerging paradigm for solving multi-objective multi-task optimization problem (MO-MTOP) using evolutionary computation. However, most existing methods tend to directly treat the multiple multi-objective tasks as different problems and optimize them by different populations, which face the difficulty in designing good knowledge transferring strategy among the tasks/populations. Different from existing methods that suffer from the difficult knowledge transfer, this paper proposes to treat the MO-MTOP as a multi-objective multi-criteria optimization problem (MO-MCOP), so that the knowledge of all the tasks can be inherited in a same population to be fully utilized for solving the MO-MTOP more efficiently. To be specific, the fitness evaluation function of each task in the MO-MTOP is treated as an evaluation criterion in the corresponding MO-MCOP, and therefore, the MO-MCOP has multiple relevant evaluation criteria to help the individual selection and evolution in different evolutionary stages. Furthermore, a probability-based criterion selection strategy and an adaptive parameter learning method are also proposed to better select the fitness evaluation function as the criterion. By doing so, the algorithm can use suitable evaluation criteria from different tasks at different evolutionary stages to guide the individual selection and population evolution, so as to find out the Pareto optimal solutions of all tasks. By integrating the above, this paper develops a multi-objective multi-criteria evolutionary algorithm framework for solving MO-MTOP. To investigate the proposed algorithm, extensive experiments are conducted on widely used MO-MTOPs to compare with some state-of-the-art and well-performing algorithms, which have verified the great effectiveness and efficiency of the proposed algorithm. Therefore, treating MO-MTOP as MO-MCOP is a potential and promising direction for solving MO-MTOP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张国麒完成签到 ,获得积分10
刚刚
刚刚
1秒前
高兴诗云应助沐梦采纳,获得10
2秒前
3秒前
帅仁123发布了新的文献求助10
3秒前
4秒前
5秒前
科研通AI2S应助三又一十八采纳,获得10
5秒前
5秒前
5秒前
生动茗茗完成签到,获得积分10
5秒前
陈大碗发布了新的文献求助10
5秒前
一颗小圆圆完成签到,获得积分10
5秒前
xiao发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助200
6秒前
6秒前
舒服的牛排完成签到 ,获得积分10
6秒前
雪白梦容发布了新的文献求助10
6秒前
务实时光发布了新的文献求助10
6秒前
7秒前
乐乐应助韩1234采纳,获得10
8秒前
解语花发布了新的文献求助10
8秒前
lzx完成签到,获得积分10
8秒前
8秒前
8秒前
柠檬发布了新的文献求助20
9秒前
快乐映秋完成签到,获得积分10
9秒前
yyy发布了新的文献求助10
9秒前
高乾飞完成签到,获得积分10
9秒前
星星发布了新的文献求助10
11秒前
11秒前
11秒前
寄偶发布了新的文献求助10
12秒前
科研通AI5应助伶俐柔采纳,获得30
12秒前
amberzyc发布了新的文献求助10
12秒前
熊猫小肿完成签到,获得积分10
13秒前
小摩托完成签到,获得积分20
13秒前
芝士小熊发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001832
求助须知:如何正确求助?哪些是违规求助? 4246915
关于积分的说明 13231512
捐赠科研通 4045758
什么是DOI,文献DOI怎么找? 2213210
邀请新用户注册赠送积分活动 1223392
关于科研通互助平台的介绍 1143701