Multi-objective multi-criteria evolutionary algorithm for multi-objective multi-task optimization

进化算法 计算机科学 选择(遗传算法) 任务(项目管理) 进化计算 人口 多目标优化 计算智能 进化规划 人工智能 机器学习 社会学 人口学 经济 管理
作者
Ke-Lin Du,Jianyu Li,Hua Wang,Jun Zhang
出处
期刊:Complex & Intelligent Systems 卷期号:9 (2): 1211-1228 被引量:12
标识
DOI:10.1007/s40747-022-00650-8
摘要

Abstract Evolutionary multi-objective multi-task optimization is an emerging paradigm for solving multi-objective multi-task optimization problem (MO-MTOP) using evolutionary computation. However, most existing methods tend to directly treat the multiple multi-objective tasks as different problems and optimize them by different populations, which face the difficulty in designing good knowledge transferring strategy among the tasks/populations. Different from existing methods that suffer from the difficult knowledge transfer, this paper proposes to treat the MO-MTOP as a multi-objective multi-criteria optimization problem (MO-MCOP), so that the knowledge of all the tasks can be inherited in a same population to be fully utilized for solving the MO-MTOP more efficiently. To be specific, the fitness evaluation function of each task in the MO-MTOP is treated as an evaluation criterion in the corresponding MO-MCOP, and therefore, the MO-MCOP has multiple relevant evaluation criteria to help the individual selection and evolution in different evolutionary stages. Furthermore, a probability-based criterion selection strategy and an adaptive parameter learning method are also proposed to better select the fitness evaluation function as the criterion. By doing so, the algorithm can use suitable evaluation criteria from different tasks at different evolutionary stages to guide the individual selection and population evolution, so as to find out the Pareto optimal solutions of all tasks. By integrating the above, this paper develops a multi-objective multi-criteria evolutionary algorithm framework for solving MO-MTOP. To investigate the proposed algorithm, extensive experiments are conducted on widely used MO-MTOPs to compare with some state-of-the-art and well-performing algorithms, which have verified the great effectiveness and efficiency of the proposed algorithm. Therefore, treating MO-MTOP as MO-MCOP is a potential and promising direction for solving MO-MTOP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助伯赏满天采纳,获得10
1秒前
坦率耳机应助我很nice采纳,获得10
1秒前
小糯米完成签到,获得积分10
1秒前
彭于晏应助lawson采纳,获得10
1秒前
常鸿珍关注了科研通微信公众号
1秒前
1秒前
2秒前
DDy10001发布了新的文献求助10
2秒前
老实薯片完成签到,获得积分10
2秒前
鹏程完成签到 ,获得积分10
2秒前
Ava应助徐大平的阿拉采纳,获得10
3秒前
汉堡包应助阿丘采纳,获得10
3秒前
zyy6657完成签到,获得积分10
3秒前
3秒前
sin完成签到,获得积分20
3秒前
3秒前
vividzxm发布了新的文献求助10
3秒前
maxinghrr完成签到,获得积分0
4秒前
科目三应助小陈要发SCI采纳,获得10
4秒前
liuyafei发布了新的文献求助10
5秒前
陈森发布了新的文献求助10
6秒前
6秒前
不配.应助DDy10001采纳,获得10
7秒前
Ansels完成签到,获得积分10
7秒前
小二郎应助run采纳,获得10
8秒前
开门啊菇凉完成签到,获得积分0
8秒前
韩洋发布了新的文献求助10
8秒前
Vinaceliu完成签到,获得积分10
9秒前
9秒前
千叶发布了新的文献求助10
10秒前
乐乐乐乐乐乐应助奕初阳采纳,获得10
10秒前
系统提示完成签到,获得积分10
11秒前
zls发布了新的文献求助10
11秒前
11秒前
sin发布了新的文献求助10
12秒前
Zhou完成签到,获得积分10
12秒前
xxxx完成签到 ,获得积分10
12秒前
Bing发布了新的文献求助10
13秒前
桐桐应助Aterna春采纳,获得10
13秒前
顺心初柳关注了科研通微信公众号
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151396
求助须知:如何正确求助?哪些是违规求助? 2802862
关于积分的说明 7850843
捐赠科研通 2460290
什么是DOI,文献DOI怎么找? 1309701
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760