Multi-objective multi-criteria evolutionary algorithm for multi-objective multi-task optimization

进化算法 计算机科学 选择(遗传算法) 任务(项目管理) 进化计算 人口 多目标优化 计算智能 进化规划 人工智能 机器学习 社会学 人口学 经济 管理
作者
Ke-Lin Du,Jianyu Li,Hua Wang,Jun Zhang
出处
期刊:Complex & Intelligent Systems 卷期号:9 (2): 1211-1228 被引量:12
标识
DOI:10.1007/s40747-022-00650-8
摘要

Abstract Evolutionary multi-objective multi-task optimization is an emerging paradigm for solving multi-objective multi-task optimization problem (MO-MTOP) using evolutionary computation. However, most existing methods tend to directly treat the multiple multi-objective tasks as different problems and optimize them by different populations, which face the difficulty in designing good knowledge transferring strategy among the tasks/populations. Different from existing methods that suffer from the difficult knowledge transfer, this paper proposes to treat the MO-MTOP as a multi-objective multi-criteria optimization problem (MO-MCOP), so that the knowledge of all the tasks can be inherited in a same population to be fully utilized for solving the MO-MTOP more efficiently. To be specific, the fitness evaluation function of each task in the MO-MTOP is treated as an evaluation criterion in the corresponding MO-MCOP, and therefore, the MO-MCOP has multiple relevant evaluation criteria to help the individual selection and evolution in different evolutionary stages. Furthermore, a probability-based criterion selection strategy and an adaptive parameter learning method are also proposed to better select the fitness evaluation function as the criterion. By doing so, the algorithm can use suitable evaluation criteria from different tasks at different evolutionary stages to guide the individual selection and population evolution, so as to find out the Pareto optimal solutions of all tasks. By integrating the above, this paper develops a multi-objective multi-criteria evolutionary algorithm framework for solving MO-MTOP. To investigate the proposed algorithm, extensive experiments are conducted on widely used MO-MTOPs to compare with some state-of-the-art and well-performing algorithms, which have verified the great effectiveness and efficiency of the proposed algorithm. Therefore, treating MO-MTOP as MO-MCOP is a potential and promising direction for solving MO-MTOP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
小分队发布了新的文献求助10
1秒前
1秒前
自然白安发布了新的文献求助10
1秒前
11发布了新的文献求助10
1秒前
源主儿发布了新的文献求助10
2秒前
SYX完成签到,获得积分10
2秒前
慕青应助AJ采纳,获得10
2秒前
3秒前
Jia完成签到,获得积分10
4秒前
kagami应助dengdengdeng采纳,获得30
4秒前
田様应助LJD采纳,获得10
4秒前
脑洞疼应助飘逸秋荷采纳,获得10
4秒前
暴躁的纸飞机完成签到,获得积分10
4秒前
缥缈怀绿完成签到,获得积分10
4秒前
5秒前
5秒前
方向发布了新的文献求助10
6秒前
ZhijunXiang发布了新的文献求助10
7秒前
xumz完成签到,获得积分10
7秒前
斯文败类应助平常的无极采纳,获得10
7秒前
7秒前
7秒前
小憨兔cc完成签到,获得积分10
7秒前
11完成签到,获得积分10
8秒前
8秒前
xumz发布了新的文献求助30
11秒前
12秒前
李亚婷发布了新的文献求助10
12秒前
12秒前
小二郎应助小金鱼儿采纳,获得10
12秒前
852应助gs采纳,获得10
12秒前
汉堡包应助wind采纳,获得10
13秒前
擎天之柱发布了新的文献求助10
13秒前
彭希帆发布了新的文献求助10
14秒前
Laura567完成签到,获得积分10
15秒前
guosheng发布了新的文献求助10
16秒前
顺利的爆米花完成签到 ,获得积分10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961655
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139004
捐赠科研通 3240407
什么是DOI,文献DOI怎么找? 1790947
邀请新用户注册赠送积分活动 872683
科研通“疑难数据库(出版商)”最低求助积分说明 803306