Multi-objective multi-criteria evolutionary algorithm for multi-objective multi-task optimization

进化算法 计算机科学 选择(遗传算法) 任务(项目管理) 进化计算 人口 多目标优化 计算智能 进化规划 人工智能 机器学习 工程类 社会学 人口学 系统工程
作者
Ke-Jing Du,Jian-Yu Li,Hua Wang,Jun Zhang
出处
期刊:Complex & Intelligent Systems 卷期号:9 (2): 1211-1228 被引量:20
标识
DOI:10.1007/s40747-022-00650-8
摘要

Abstract Evolutionary multi-objective multi-task optimization is an emerging paradigm for solving multi-objective multi-task optimization problem (MO-MTOP) using evolutionary computation. However, most existing methods tend to directly treat the multiple multi-objective tasks as different problems and optimize them by different populations, which face the difficulty in designing good knowledge transferring strategy among the tasks/populations. Different from existing methods that suffer from the difficult knowledge transfer, this paper proposes to treat the MO-MTOP as a multi-objective multi-criteria optimization problem (MO-MCOP), so that the knowledge of all the tasks can be inherited in a same population to be fully utilized for solving the MO-MTOP more efficiently. To be specific, the fitness evaluation function of each task in the MO-MTOP is treated as an evaluation criterion in the corresponding MO-MCOP, and therefore, the MO-MCOP has multiple relevant evaluation criteria to help the individual selection and evolution in different evolutionary stages. Furthermore, a probability-based criterion selection strategy and an adaptive parameter learning method are also proposed to better select the fitness evaluation function as the criterion. By doing so, the algorithm can use suitable evaluation criteria from different tasks at different evolutionary stages to guide the individual selection and population evolution, so as to find out the Pareto optimal solutions of all tasks. By integrating the above, this paper develops a multi-objective multi-criteria evolutionary algorithm framework for solving MO-MTOP. To investigate the proposed algorithm, extensive experiments are conducted on widely used MO-MTOPs to compare with some state-of-the-art and well-performing algorithms, which have verified the great effectiveness and efficiency of the proposed algorithm. Therefore, treating MO-MTOP as MO-MCOP is a potential and promising direction for solving MO-MTOP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tttttttttt发布了新的文献求助30
刚刚
硕shuo完成签到,获得积分10
刚刚
斯文败类应助道阻且长采纳,获得10
1秒前
vm光荣关注了科研通微信公众号
2秒前
2秒前
从容苡完成签到,获得积分10
2秒前
橙子发布了新的文献求助10
2秒前
cc完成签到,获得积分10
3秒前
vk完成签到,获得积分10
3秒前
籽岷发布了新的文献求助10
3秒前
谢颖俊完成签到,获得积分10
4秒前
pearlwh1227完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
丘比特应助jmy1995采纳,获得10
6秒前
7秒前
7秒前
7秒前
烟花应助lang采纳,获得10
8秒前
汉堡包应助万水千山采纳,获得10
8秒前
9秒前
baihehuakai完成签到,获得积分10
9秒前
SciGPT应助风趣的凡采纳,获得10
10秒前
陆人甲发布了新的文献求助10
10秒前
义气若菱发布了新的文献求助10
10秒前
edtaa完成签到 ,获得积分10
11秒前
义气若菱发布了新的文献求助10
11秒前
11秒前
英姑应助hxm采纳,获得10
11秒前
cxz发布了新的文献求助10
11秒前
18234042095完成签到 ,获得积分10
12秒前
搜集达人应助Yidie采纳,获得10
13秒前
DONG发布了新的文献求助10
14秒前
14秒前
LChen完成签到,获得积分10
14秒前
Hong完成签到 ,获得积分10
14秒前
yznfly举报快乐战神没烦恼求助涉嫌违规
15秒前
义气若菱发布了新的文献求助10
16秒前
hehe发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713248
求助须知:如何正确求助?哪些是违规求助? 5214511
关于积分的说明 15270206
捐赠科研通 4865029
什么是DOI,文献DOI怎么找? 2611814
邀请新用户注册赠送积分活动 1562053
关于科研通互助平台的介绍 1519295