Multi-objective multi-criteria evolutionary algorithm for multi-objective multi-task optimization

进化算法 计算机科学 选择(遗传算法) 任务(项目管理) 进化计算 人口 多目标优化 计算智能 进化规划 人工智能 机器学习 工程类 人口学 社会学 系统工程
作者
Ke-Jing Du,Jian-Yu Li,Hua Wang,Jun Zhang
出处
期刊:Complex & Intelligent Systems 卷期号:9 (2): 1211-1228 被引量:20
标识
DOI:10.1007/s40747-022-00650-8
摘要

Abstract Evolutionary multi-objective multi-task optimization is an emerging paradigm for solving multi-objective multi-task optimization problem (MO-MTOP) using evolutionary computation. However, most existing methods tend to directly treat the multiple multi-objective tasks as different problems and optimize them by different populations, which face the difficulty in designing good knowledge transferring strategy among the tasks/populations. Different from existing methods that suffer from the difficult knowledge transfer, this paper proposes to treat the MO-MTOP as a multi-objective multi-criteria optimization problem (MO-MCOP), so that the knowledge of all the tasks can be inherited in a same population to be fully utilized for solving the MO-MTOP more efficiently. To be specific, the fitness evaluation function of each task in the MO-MTOP is treated as an evaluation criterion in the corresponding MO-MCOP, and therefore, the MO-MCOP has multiple relevant evaluation criteria to help the individual selection and evolution in different evolutionary stages. Furthermore, a probability-based criterion selection strategy and an adaptive parameter learning method are also proposed to better select the fitness evaluation function as the criterion. By doing so, the algorithm can use suitable evaluation criteria from different tasks at different evolutionary stages to guide the individual selection and population evolution, so as to find out the Pareto optimal solutions of all tasks. By integrating the above, this paper develops a multi-objective multi-criteria evolutionary algorithm framework for solving MO-MTOP. To investigate the proposed algorithm, extensive experiments are conducted on widely used MO-MTOPs to compare with some state-of-the-art and well-performing algorithms, which have verified the great effectiveness and efficiency of the proposed algorithm. Therefore, treating MO-MTOP as MO-MCOP is a potential and promising direction for solving MO-MTOP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然的萝完成签到,获得积分10
刚刚
1秒前
肉song小贝完成签到,获得积分20
1秒前
qian完成签到 ,获得积分10
1秒前
梦槐发布了新的文献求助10
2秒前
2秒前
延胡索完成签到,获得积分10
2秒前
脑洞疼应助眼睛大的芹菜采纳,获得10
3秒前
3秒前
BareBear应助高挑的水桃采纳,获得10
4秒前
斯文败类应助keeper王采纳,获得30
5秒前
5秒前
lungfiga完成签到,获得积分20
5秒前
RSU完成签到,获得积分10
6秒前
6秒前
6秒前
jun驳回了桐桐应助
6秒前
Tracy给Tracy的求助进行了留言
6秒前
旷野发布了新的文献求助10
6秒前
YXH发布了新的文献求助30
6秒前
zz完成签到,获得积分10
6秒前
朱瑶君完成签到,获得积分10
7秒前
文静的绮烟完成签到 ,获得积分10
7秒前
7秒前
强风吹拂发布了新的文献求助10
9秒前
9秒前
简单书白发布了新的文献求助10
10秒前
wop111发布了新的文献求助10
10秒前
潇洒的寻梅完成签到 ,获得积分10
10秒前
10秒前
积极的雅寒完成签到 ,获得积分10
10秒前
11秒前
脑洞疼应助evlouu采纳,获得10
12秒前
啊噢发布了新的文献求助10
12秒前
aiqiangyu发布了新的文献求助10
12秒前
12秒前
梦槐完成签到,获得积分10
12秒前
平常芷波发布了新的文献求助10
12秒前
13秒前
wanci应助大可爱啵啵采纳,获得30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352940
求助须知:如何正确求助?哪些是违规求助? 4485618
关于积分的说明 13963907
捐赠科研通 4385768
什么是DOI,文献DOI怎么找? 2409561
邀请新用户注册赠送积分活动 1401897
关于科研通互助平台的介绍 1375605