Multi-objective multi-criteria evolutionary algorithm for multi-objective multi-task optimization

进化算法 计算机科学 选择(遗传算法) 任务(项目管理) 进化计算 人口 多目标优化 计算智能 进化规划 人工智能 机器学习 工程类 社会学 人口学 系统工程
作者
Ke-Jing Du,Jian-Yu Li,Hua Wang,Jun Zhang
出处
期刊:Complex & Intelligent Systems 卷期号:9 (2): 1211-1228 被引量:20
标识
DOI:10.1007/s40747-022-00650-8
摘要

Abstract Evolutionary multi-objective multi-task optimization is an emerging paradigm for solving multi-objective multi-task optimization problem (MO-MTOP) using evolutionary computation. However, most existing methods tend to directly treat the multiple multi-objective tasks as different problems and optimize them by different populations, which face the difficulty in designing good knowledge transferring strategy among the tasks/populations. Different from existing methods that suffer from the difficult knowledge transfer, this paper proposes to treat the MO-MTOP as a multi-objective multi-criteria optimization problem (MO-MCOP), so that the knowledge of all the tasks can be inherited in a same population to be fully utilized for solving the MO-MTOP more efficiently. To be specific, the fitness evaluation function of each task in the MO-MTOP is treated as an evaluation criterion in the corresponding MO-MCOP, and therefore, the MO-MCOP has multiple relevant evaluation criteria to help the individual selection and evolution in different evolutionary stages. Furthermore, a probability-based criterion selection strategy and an adaptive parameter learning method are also proposed to better select the fitness evaluation function as the criterion. By doing so, the algorithm can use suitable evaluation criteria from different tasks at different evolutionary stages to guide the individual selection and population evolution, so as to find out the Pareto optimal solutions of all tasks. By integrating the above, this paper develops a multi-objective multi-criteria evolutionary algorithm framework for solving MO-MTOP. To investigate the proposed algorithm, extensive experiments are conducted on widely used MO-MTOPs to compare with some state-of-the-art and well-performing algorithms, which have verified the great effectiveness and efficiency of the proposed algorithm. Therefore, treating MO-MTOP as MO-MCOP is a potential and promising direction for solving MO-MTOP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安详的小鸽子完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
方远锋完成签到,获得积分10
2秒前
华仔应助flyzhang20采纳,获得10
3秒前
3秒前
3秒前
ask发布了新的文献求助10
5秒前
6秒前
6秒前
Silvia应助科研狗采纳,获得10
7秒前
张莜莜发布了新的文献求助10
7秒前
江南zzn完成签到,获得积分10
8秒前
www发布了新的文献求助10
9秒前
9秒前
重要芷巧发布了新的文献求助10
12秒前
12秒前
传奇3应助鲤鱼松鼠采纳,获得10
12秒前
Orange应助熏风采纳,获得10
13秒前
14秒前
15秒前
毛毛完成签到,获得积分20
16秒前
食小十发布了新的文献求助10
16秒前
小夏完成签到,获得积分10
17秒前
冰烟完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
20秒前
nczpf2010完成签到,获得积分10
20秒前
flyzhang20发布了新的文献求助10
21秒前
沉默新梅发布了新的文献求助10
21秒前
欢呼山雁发布了新的文献求助10
22秒前
CipherSage应助Warden采纳,获得10
23秒前
食小十完成签到,获得积分20
24秒前
24秒前
震动的翠关注了科研通微信公众号
25秒前
悦耳海亦发布了新的文献求助10
26秒前
柚子完成签到 ,获得积分10
26秒前
找文献呢发布了新的文献求助10
29秒前
李爱国应助医学僧采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679986
求助须知:如何正确求助?哪些是违规求助? 4994921
关于积分的说明 15171248
捐赠科研通 4839686
什么是DOI,文献DOI怎么找? 2593578
邀请新用户注册赠送积分活动 1546615
关于科研通互助平台的介绍 1504727