Charge transport and space charge dynamics in EPDM/2D-nanoclay composite dielectrics

材料科学 空间电荷 电介质 复合材料 复合数
作者
Mohamadreza Arab Baferani,Chao Wu,Yang Cao
出处
期刊:Composites Science and Technology [Elsevier]
卷期号:: 109241-109241 被引量:2
标识
DOI:10.1016/j.compscitech.2021.109241
摘要

Composite dielectrics with two types of 2D-nanoclays (i.e., Kaolinite and Talc) incorporated in ethylene propylene diene monomer (EPDM) as the polymer matrix exhibit distinctly different electrical performances for high-voltage direct current (HVDC) cable insulations. This study investigated electrical conductivity and space charge as the key electrical characteristics of DC cable insulation in conjunction with dielectric spectroscopies. The findings of this study revealed that the composite dielectric with Talc 2D-nanoclays significantly suppressed space charge and thus minimized electric field distortion to less than 9% under 20 kV/mm at both measured temperatures of 25 °C and 50 °C with thermal gradient. In addition, the activation energy of electrical conductivity for the composite dielectric with Talc 2D-nanoclays is 0.45 eV which is notably lower than that of the composite dielectric with Kaolinite 2D-nanoclays, 0.95 eV. Based on the experimental results, the microstructural characteristics of composite dielectrics were discussed to provide insights into charge transport and space charge dynamics in the composite dielectrics. The charge transport mechanism attributed to the electronic and ionic conduction was explained, and the reasons for space charge accumulation were discussed. The larger interfacial area of 2D-nanoclay particles, the uniform and oriented distribution of 2D platelet-like nanoclay, and the smaller difference between the bandgap of polymer and 2D-nanoclay particles contribute to controlling the charge transport and suppressing the space charge accumulation in the composite dielectrics. Charge dynamics from the dielectric spectroscopy based on the Dissado-Hill model analysis confirms the explained mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zxc完成签到,获得积分10
1秒前
lbt完成签到 ,获得积分10
2秒前
yao完成签到 ,获得积分10
3秒前
3秒前
5秒前
6秒前
6秒前
doudou完成签到 ,获得积分10
6秒前
BCS完成签到,获得积分10
6秒前
领导范儿应助KYN采纳,获得10
6秒前
7秒前
独特的莫言完成签到,获得积分10
9秒前
lin发布了新的文献求助10
10秒前
aero完成签到 ,获得积分10
12秒前
123号完成签到,获得积分10
14秒前
充电宝应助TT采纳,获得10
16秒前
17秒前
17秒前
英姑应助荒野星辰采纳,获得10
19秒前
19秒前
YHY完成签到,获得积分10
21秒前
科研通AI5应助魏伯安采纳,获得10
21秒前
caoyy发布了新的文献求助10
21秒前
22秒前
23秒前
张喻235532完成签到,获得积分10
24秒前
失眠虔纹发布了新的文献求助10
25秒前
香蕉觅云应助糊涂的小伙采纳,获得10
25秒前
25秒前
sutharsons应助科研通管家采纳,获得200
27秒前
打打应助科研通管家采纳,获得10
27秒前
axin应助科研通管家采纳,获得10
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
小蘑菇应助科研通管家采纳,获得10
27秒前
上官若男应助科研通管家采纳,获得10
27秒前
无花果应助科研通管家采纳,获得10
27秒前
27秒前
李健应助科研通管家采纳,获得10
27秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
Ava应助科研通管家采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849