Numerical simulation of flow field and residence time of nanoparticles in a 1000-ton industrial multi-jet combustion reactor

停留时间(流体动力学) 机械 燃烧 喷射(流体) 停留时间分布 混合(物理) 湍流 涡流 粒子(生态学) 材料科学 流量(数学) 化学 物理 工程类 地质学 海洋学 有机化学 岩土工程 量子力学
作者
Jie Ju,Xianjian Duan,Bismark Sarkodie,Yanjie Hu,Hao Jiang,Chunzhong Li
出处
期刊:Chinese Journal of Chemical Engineering [Elsevier]
卷期号:51: 86-99 被引量:4
标识
DOI:10.1016/j.cjche.2021.12.008
摘要

In this work, by establishing a three-dimensional physical model of a 1000-ton industrial multi-jet combustion reactor, a hexahedral structured grid was used to discretize the model. Combined with realizable k–ε model, eddy-dissipation-concept, discrete-ordinate radiation model, hydrogen 19-step detailed reaction mechanism, air age user-defined-function, velocity field, temperature field, concentration field and gas arrival time in the reactor were numerically simulated. The Euler–Lagrange method combined with the discrete-phase-model was used to reveal the flow characteristics of particles in the reactor, and based on this, the effects of the reactor aspect ratios, central jet gas velocity and particle size on the flow field characteristics and particle back-mixing degree in the reactor were investigated. The results show that with the decrease of aspect ratio in the combustion reactors, the velocity and temperature attenuation in the reactor are intensified, the vortex phenomenon is aggravated, and the residence time distribution of nanoparticles is more dispersed. With the increase in the central jet gas velocities in reactors, the vortex lengthens along the axis, the turbulence intensity increases, and the residence time of particles decreases. The back-mixing degree and residence time of particles in the reactor also decrease with the increase in particle size. The simulation results can provide reference for the structural regulation of nanoparticles and the structural design of combustion reactor in the process of gas combustion synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助深情的不评采纳,获得10
刚刚
飞快的梦易完成签到,获得积分10
1秒前
Akim应助1b采纳,获得10
1秒前
末岛完成签到,获得积分10
1秒前
sweetbearm应助benben采纳,获得10
1秒前
1秒前
2秒前
科研通AI5应助今今采纳,获得10
2秒前
通~发布了新的文献求助10
2秒前
YY完成签到,获得积分10
2秒前
首席医官完成签到,获得积分10
3秒前
坚定迎天完成签到,获得积分10
3秒前
Zzzoey发布了新的文献求助10
4秒前
搜集达人应助小罗飞飞飞采纳,获得10
4秒前
詹卫卫完成签到 ,获得积分10
4秒前
4秒前
宇_发布了新的文献求助20
4秒前
5秒前
esdeath发布了新的文献求助10
5秒前
云轩完成签到,获得积分10
5秒前
5秒前
5秒前
自然乐松发布了新的文献求助10
5秒前
yesir完成签到,获得积分10
6秒前
普雅花的等待完成签到,获得积分10
6秒前
想人陪的以云完成签到,获得积分10
7秒前
科研通AI5应助德德采纳,获得10
7秒前
NexusExplorer应助李来仪采纳,获得10
7秒前
威康宇宙发布了新的文献求助10
7秒前
小蘑菇应助润润轩轩采纳,获得10
7秒前
8秒前
8秒前
个性尔槐发布了新的文献求助10
8秒前
xiangxl完成签到,获得积分10
8秒前
fang完成签到 ,获得积分10
9秒前
汉堡包应助zhui采纳,获得10
9秒前
9秒前
万万完成签到,获得积分10
9秒前
sci完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794