Deep Learning Algorithm for Fully Automated Detection of Small (≤4 cm) Renal Cell Carcinoma in Contrast-Enhanced Computed Tomography Using a Multicenter Database

分割 肾细胞癌 医学 人工智能 对比度(视觉) 放射科 无症状的 计算机科学 算法 核医学 数据库
作者
Naoki Toda,Masahiro Hashimoto,Yuki Arita,Hasnine Haque,Hirotaka Akita,Toshiaki Akashi,Hideo Gobara,Akihiro Nishie,Masahiro Yakami,Atsushi Nakamoto,Takeyuki Watadani,Mototsugu Oya,Masahiro Jinzaki
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:Publish Ahead of Print
标识
DOI:10.1097/rli.0000000000000842
摘要

Renal cell carcinoma (RCC) is often found incidentally in asymptomatic individuals undergoing abdominal computed tomography (CT) examinations. The purpose of our study is to develop a deep learning-based algorithm for fully automated detection of small (≤4 cm) RCCs in contrast-enhanced CT images using a multicenter database and to evaluate its performance.For the algorithmic detection of RCC, we retrospectively selected contrast-enhanced CT images of patients with histologically confirmed single RCC with a tumor diameter of 4 cm or less between January 2005 and May 2020 from 7 centers in the Japan Medical Image Database. A total of 453 patients from 6 centers were selected as dataset A, and 132 patients from 1 center were selected as dataset B. Dataset A was used for training and internal validation. Dataset B was used only for external validation. Nephrogenic phase images of multiphase CT or single-phase postcontrast CT images were used. Our algorithm consisted of 2-step segmentation models, kidney segmentation and tumor segmentation. For internal validation with dataset A, 10-fold cross-validation was applied. For external validation, the models trained with dataset A were tested on dataset B. The detection performance of the models was evaluated using accuracy, sensitivity, specificity, and the area under the curve (AUC).The mean ± SD diameters of RCCs in dataset A and dataset B were 2.67 ± 0.77 cm and 2.64 ± 0.78 cm, respectively. Our algorithm yielded an accuracy, sensitivity, and specificity of 88.3%, 84.3%, and 92.3%, respectively, with dataset A and 87.5%, 84.8%, and 90.2%, respectively, with dataset B. The AUC of the algorithm with dataset A and dataset B was 0.930 and 0.933, respectively.The proposed deep learning-based algorithm achieved high accuracy, sensitivity, specificity, and AUC for the detection of small RCCs with both internal and external validations, suggesting that this algorithm could contribute to the early detection of small RCCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助时尚的语风采纳,获得10
1秒前
传奇3应助Gary采纳,获得10
1秒前
大气的山彤完成签到,获得积分10
1秒前
元锦程完成签到,获得积分10
2秒前
2秒前
专注完成签到,获得积分10
2秒前
2秒前
千山孤风完成签到,获得积分0
2秒前
可爱的函函应助福娃采纳,获得10
3秒前
雁塔完成签到 ,获得积分10
3秒前
缥缈康乃馨完成签到,获得积分20
3秒前
happiness完成签到 ,获得积分10
3秒前
3秒前
风中虔纹完成签到,获得积分10
4秒前
Divya完成签到,获得积分20
4秒前
缥缈书翠完成签到,获得积分10
4秒前
少雄完成签到,获得积分10
5秒前
可爱的函函应助YY采纳,获得10
6秒前
濮阳乐双发布了新的文献求助10
6秒前
Jasper应助陶一二采纳,获得10
6秒前
6秒前
11发布了新的文献求助10
6秒前
小田完成签到,获得积分10
6秒前
酷酷李可爱婕完成签到 ,获得积分10
6秒前
pingpinglver完成签到,获得积分20
6秒前
7秒前
7秒前
Dany完成签到,获得积分10
7秒前
8秒前
8秒前
X_runner完成签到,获得积分10
8秒前
8秒前
上山打老虎完成签到,获得积分10
9秒前
汉堡包应助wen采纳,获得10
9秒前
Q0完成签到,获得积分10
9秒前
9秒前
小二郎应助djdh采纳,获得10
9秒前
可靠青荷完成签到,获得积分10
9秒前
9秒前
独摇之完成签到,获得积分10
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Textbook of Interventional Radiology 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294808
求助须知:如何正确求助?哪些是违规求助? 2930708
关于积分的说明 8447504
捐赠科研通 2603031
什么是DOI,文献DOI怎么找? 1420842
科研通“疑难数据库(出版商)”最低求助积分说明 660682
邀请新用户注册赠送积分活动 643531