Estimation of soil organic matter content using selected spectral subset of hyperspectral data

高光谱成像 偏最小二乘回归 内容(测量理论) 土壤有机质 遥感 光谱特征 均方误差 多光谱图像 土工试验 光谱带 环境科学 数学 土壤科学 土壤水分 统计 地质学 数学分析
作者
Weichao Sun,Shuo Liu,Xia Zhang,Yao Li
出处
期刊:Geoderma [Elsevier BV]
卷期号:409: 115653-115653 被引量:52
标识
DOI:10.1016/j.geoderma.2021.115653
摘要

Soil organic matter (SOM) content plays an important role in the global carbon cycle and agricultural activities. Reflectance spectroscopy has been recognized as a promising method to rapidly estimate SOM content. However, the existing estimation methods mainly apply partial least squares regression (PLSR) to the entire spectral region of hyperspectral data. Here we proposed a method to extract the informative spectral subset based on spectral characteristics of soil constituents, which was then used to estimate SOM content with PLSR. Genetic algorithm (GA) and variable importance in the projection (VIP) score of PLSR were adopted to further select spectral bands separately. Both laboratory spectra of soil samples collected from an agricultural area and a hyperspectral satellite image were used to evaluate the performance of the method. For the estimations of SOM content using laboratory spectra, compared with the estimation using the entire spectral region of 400–2400 nm, the model accuracy was improved by using the spectral bands associated with clay minerals and the combined spectral bands of organic matter and clay minerals. For the estimations using soil spectra from hyperspectral remote sensing image, the RMSE and R2 values were improved from 0.91% and 0.34 to 0.55% and 0.76 by using the spectral bands associated with organic matter in comparison with the entire spectral region of 390–1029 nm. The estimation model developed with GA-PLSR using soil spectra from the hyperspectral satellite image was applied to map SOM content. Results suggest that estimating SOM content using informative spectral subset is promising and can be transferred to the hyperspectral satellite image to map SOM content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助欣欣子采纳,获得10
1秒前
杨棒棒完成签到,获得积分10
2秒前
gaochunjing发布了新的文献求助10
2秒前
ding应助西门访天采纳,获得10
3秒前
慕青应助拉布拉多多不多采纳,获得10
4秒前
无花果应助vina采纳,获得10
4秒前
苹果骑士完成签到,获得积分10
6秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
6秒前
7秒前
Carmen发布了新的文献求助10
11秒前
dyce发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
会玩手机的猫完成签到,获得积分10
15秒前
共享精神应助Hommand_藏山采纳,获得10
15秒前
必发sci的小王完成签到,获得积分10
15秒前
在水一方应助Nikii采纳,获得10
17秒前
17秒前
17秒前
17秒前
18秒前
18秒前
18秒前
19秒前
研友_VZG7GZ应助starchild采纳,获得10
19秒前
欣欣子发布了新的文献求助10
23秒前
ll发布了新的文献求助10
23秒前
25秒前
hcy完成签到,获得积分10
29秒前
29秒前
茹茹完成签到 ,获得积分10
31秒前
32秒前
青蛙的第二滴口水完成签到,获得积分10
33秒前
ll完成签到,获得积分10
33秒前
直率晓灵发布了新的文献求助10
34秒前
34秒前
ei123应助一个小胖子采纳,获得10
40秒前
lian发布了新的文献求助10
42秒前
orixero应助清脆雪糕采纳,获得10
43秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3676650
求助须知:如何正确求助?哪些是违规求助? 3230784
关于积分的说明 9792536
捐赠科研通 2941894
什么是DOI,文献DOI怎么找? 1612894
邀请新用户注册赠送积分活动 761348
科研通“疑难数据库(出版商)”最低求助积分说明 736813