Estimation of soil organic matter content using selected spectral subset of hyperspectral data

高光谱成像 偏最小二乘回归 内容(测量理论) 土壤有机质 遥感 光谱特征 均方误差 多光谱图像 土工试验 光谱带 环境科学 数学 土壤科学 土壤水分 统计 地质学 数学分析
作者
Weichao Sun,Shuo Liu,Xia Zhang,Yao Li
出处
期刊:Geoderma [Elsevier BV]
卷期号:409: 115653-115653 被引量:73
标识
DOI:10.1016/j.geoderma.2021.115653
摘要

Soil organic matter (SOM) content plays an important role in the global carbon cycle and agricultural activities. Reflectance spectroscopy has been recognized as a promising method to rapidly estimate SOM content. However, the existing estimation methods mainly apply partial least squares regression (PLSR) to the entire spectral region of hyperspectral data. Here we proposed a method to extract the informative spectral subset based on spectral characteristics of soil constituents, which was then used to estimate SOM content with PLSR. Genetic algorithm (GA) and variable importance in the projection (VIP) score of PLSR were adopted to further select spectral bands separately. Both laboratory spectra of soil samples collected from an agricultural area and a hyperspectral satellite image were used to evaluate the performance of the method. For the estimations of SOM content using laboratory spectra, compared with the estimation using the entire spectral region of 400–2400 nm, the model accuracy was improved by using the spectral bands associated with clay minerals and the combined spectral bands of organic matter and clay minerals. For the estimations using soil spectra from hyperspectral remote sensing image, the RMSE and R2 values were improved from 0.91% and 0.34 to 0.55% and 0.76 by using the spectral bands associated with organic matter in comparison with the entire spectral region of 390–1029 nm. The estimation model developed with GA-PLSR using soil spectra from the hyperspectral satellite image was applied to map SOM content. Results suggest that estimating SOM content using informative spectral subset is promising and can be transferred to the hyperspectral satellite image to map SOM content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6666发布了新的文献求助10
1秒前
豪士赋完成签到,获得积分10
1秒前
Steven发布了新的文献求助10
1秒前
ziyewutong完成签到,获得积分10
2秒前
2秒前
3秒前
喵小权发布了新的文献求助10
4秒前
无花果应助梅溪湖西采纳,获得10
5秒前
hyx发布了新的文献求助10
5秒前
6秒前
7秒前
残山醉梦完成签到,获得积分10
7秒前
PSY发布了新的文献求助10
7秒前
8秒前
8秒前
ytsong完成签到,获得积分10
8秒前
滕永杰完成签到,获得积分10
9秒前
路过你的夏完成签到,获得积分20
9秒前
瘦瘦发布了新的文献求助10
10秒前
11秒前
万系风发布了新的文献求助30
11秒前
搜集达人应助白羽佳采纳,获得10
13秒前
13秒前
ytsong发布了新的文献求助10
14秒前
yyxx发布了新的文献求助10
16秒前
科研通AI5应助海豹采纳,获得10
16秒前
hyx完成签到,获得积分10
17秒前
焕颜完成签到,获得积分20
17秒前
18秒前
19秒前
20秒前
小北完成签到,获得积分10
20秒前
21秒前
光夜发布了新的文献求助20
22秒前
修管子完成签到 ,获得积分0
23秒前
量子星尘发布了新的文献求助10
24秒前
丘比特应助紫陌采纳,获得10
24秒前
化身孤岛的鲸完成签到 ,获得积分10
25秒前
丘比特应助小北采纳,获得10
25秒前
狂野的驳发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956621
求助须知:如何正确求助?哪些是违规求助? 3502685
关于积分的说明 11109755
捐赠科研通 3233502
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870676
科研通“疑难数据库(出版商)”最低求助积分说明 802143