Estimation of soil organic matter content using selected spectral subset of hyperspectral data

高光谱成像 偏最小二乘回归 内容(测量理论) 土壤有机质 遥感 光谱特征 均方误差 多光谱图像 土工试验 光谱带 环境科学 数学 土壤科学 土壤水分 统计 地质学 数学分析
作者
Weichao Sun,Shuo Liu,Xia Zhang,Yao Li
出处
期刊:Geoderma [Elsevier]
卷期号:409: 115653-115653 被引量:52
标识
DOI:10.1016/j.geoderma.2021.115653
摘要

Soil organic matter (SOM) content plays an important role in the global carbon cycle and agricultural activities. Reflectance spectroscopy has been recognized as a promising method to rapidly estimate SOM content. However, the existing estimation methods mainly apply partial least squares regression (PLSR) to the entire spectral region of hyperspectral data. Here we proposed a method to extract the informative spectral subset based on spectral characteristics of soil constituents, which was then used to estimate SOM content with PLSR. Genetic algorithm (GA) and variable importance in the projection (VIP) score of PLSR were adopted to further select spectral bands separately. Both laboratory spectra of soil samples collected from an agricultural area and a hyperspectral satellite image were used to evaluate the performance of the method. For the estimations of SOM content using laboratory spectra, compared with the estimation using the entire spectral region of 400–2400 nm, the model accuracy was improved by using the spectral bands associated with clay minerals and the combined spectral bands of organic matter and clay minerals. For the estimations using soil spectra from hyperspectral remote sensing image, the RMSE and R2 values were improved from 0.91% and 0.34 to 0.55% and 0.76 by using the spectral bands associated with organic matter in comparison with the entire spectral region of 390–1029 nm. The estimation model developed with GA-PLSR using soil spectra from the hyperspectral satellite image was applied to map SOM content. Results suggest that estimating SOM content using informative spectral subset is promising and can be transferred to the hyperspectral satellite image to map SOM content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
薰硝壤应助科研通管家采纳,获得20
刚刚
orixero应助科研通管家采纳,获得10
1秒前
vlots应助科研通管家采纳,获得30
1秒前
超帅路灯应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得20
1秒前
vlots应助科研通管家采纳,获得30
1秒前
iNk应助科研通管家采纳,获得20
1秒前
细心孤丹完成签到,获得积分10
1秒前
上官若男应助科研通管家采纳,获得30
1秒前
小马甲应助科研通管家采纳,获得30
1秒前
2秒前
2秒前
加油完成签到 ,获得积分10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
桐桐应助清水小镇采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
典雅平卉完成签到,获得积分20
3秒前
iNk应助朝颜采纳,获得10
3秒前
3秒前
3秒前
JHcHuN发布了新的文献求助10
3秒前
勤恳的灵雁完成签到 ,获得积分10
4秒前
果不欺然发布了新的文献求助10
4秒前
想不出昵称完成签到,获得积分10
4秒前
年轻上线完成签到,获得积分10
5秒前
blUe发布了新的文献求助10
5秒前
LJW发布了新的文献求助10
5秒前
6秒前
田様应助xuan采纳,获得10
7秒前
restudy68完成签到,获得积分10
7秒前
咎星完成签到,获得积分10
7秒前
CipherSage应助蓝绝采纳,获得10
7秒前
芝士蛋糕完成签到 ,获得积分10
8秒前
瘦瘦小萱完成签到,获得积分10
8秒前
ding应助高贵火车采纳,获得10
9秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155301
求助须知:如何正确求助?哪些是违规求助? 2806177
关于积分的说明 7868353
捐赠科研通 2464650
什么是DOI,文献DOI怎么找? 1311885
科研通“疑难数据库(出版商)”最低求助积分说明 629777
版权声明 601880