Trans-omics analyses revealed key epigenetic genes associated with overall survival in secondary progressive multiple sclerosis

表观遗传学 基因 DNA甲基化 疾病 甲基化 生物 生物信息学 计算生物学 基因表达 遗传学 医学 内科学
作者
Fei Ye,Yuanyuan Dai,Tianzhu Wang,Jie Liang,Xiaoxin Wu,Kai Lan,Wenli Sheng
出处
期刊:Journal of Neuroimmunology [Elsevier]
卷期号:364: 577809-577809
标识
DOI:10.1016/j.jneuroim.2022.577809
摘要

Secondary progressive multiple sclerosis (SPMS) is the second most common presentation of multiple sclerosis (MS) and is characterized by a gradually deteriorating disease with or without relapses. Approximately 80% of patients with relapsing-remitting MS (RRMS) develop SPMS within 20 years. Epidemiological investigations have revealed an average 7-year life expectancy decrease (more severe in progressive subtypes) in patients with MS. Studies have focused on the neurodegenerative pathogenesis of SPMS; and epigenetic changes have been associated with disease progression in neurodegenerative disorders. However, the evidence for the association between epigenetic changes and SPMS is scarce. Thus, in this study we aimed to identify the key epigenetic genes in SPMS.We downloaded DNA methylation and gene expression matrices from the Gene Expression Omnibus (GEO) database. We used bioinformatic analyses to identify key epigenetic genes associated with overall survival (OS) in patients with SPMS.We found 49 differentially methylated positions (DMPs) between the SPMS and control GSE40360 datasets. We used the wANNOVAR server to obtain 64 methylated genes. We merged the gene expression datasets (GSE131282 and GSE135511) in the NetworkAnalyst platform and found 12,442 differentially-expressed genes (DEGs) between SPMS and controls using the Fisher's method, fixed effect model, Vote counting, and direct merging methods. Moreover, we identified 21 epigenetic genes (all hyper-methylated) after an integrating analysis of DMPs and DEGs of patients with SPMS. We established an epigenetic gene signature associated with the OS of patients with SPMS including six hyper-methylated genes (ITGA6, PPP1R16B, RNF126, ABHD8, FOXK1, and SLC6A19) based on the LASSO-Cox method. The calculated individual risk scores were associated with Oss, and we divided patients into high- and low-risk groups on the basis of the mean cut-off value. The six key epigenetic genes were significantly associated with gender, disease duration, and age at death via Spearman correlation analyses. In addition, survival analyses revealed a significant OS difference between high- and low-risk groups. The ROC curves indicated good performance for this predictive model.We identified 21 hyper-methylated genes in patients with SPMS via an integrated analysis of DNA methylation and gene expression datasets. We identified a six-epigenetic gene signature that predicts the individual OS with good accuracy. These results indicated that epigenetic modifications play a vital role in the disease progression of SPMS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wency完成签到,获得积分10
1秒前
orixero应助橘子树采纳,获得10
1秒前
周星星完成签到,获得积分20
1秒前
kk完成签到,获得积分20
2秒前
guojingjing发布了新的文献求助10
3秒前
JIAO完成签到,获得积分10
3秒前
bb发布了新的文献求助10
3秒前
可爱的小丸子完成签到,获得积分10
3秒前
meng完成签到,获得积分10
4秒前
4秒前
rafa完成签到 ,获得积分10
5秒前
next完成签到,获得积分10
5秒前
5秒前
公西翠萱完成签到,获得积分10
5秒前
颜凡桃完成签到,获得积分10
6秒前
TTTTTOTOT完成签到,获得积分10
6秒前
鲤鱼怀绿完成签到,获得积分10
6秒前
无花果应助白华苍松采纳,获得10
7秒前
WN完成签到,获得积分10
7秒前
苯二氮卓完成签到,获得积分10
7秒前
谢家宝树完成签到,获得积分10
8秒前
MYC007完成签到 ,获得积分10
8秒前
www完成签到,获得积分10
9秒前
子羽完成签到,获得积分10
9秒前
9秒前
10秒前
情怀应助健哥采纳,获得10
10秒前
11秒前
xxxxx完成签到,获得积分0
13秒前
tong完成签到,获得积分10
13秒前
MFNM完成签到,获得积分10
13秒前
务实的数据线完成签到,获得积分10
13秒前
Xavier完成签到,获得积分10
14秒前
14秒前
何浏亮完成签到,获得积分10
15秒前
时年发布了新的文献求助10
15秒前
称心不尤完成签到 ,获得积分10
16秒前
苏满天完成签到,获得积分10
16秒前
18秒前
魁梧的笑阳完成签到 ,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890