Document-Level Biomedical Relation Extraction with Generative Adversarial Network and Dual-Attention Multi-Instance Learning

关系抽取 计算机科学 关系(数据库) 生成语法 判决 自然语言处理 人工智能 情报检索 透视图(图形) 信息抽取 生成模型 对偶(语法数字) 图形 数据挖掘 理论计算机科学 语言学 哲学
作者
Lishuang Li,Ruiyuan Lian,Hongbin Lü
标识
DOI:10.1109/bibm52615.2021.9669590
摘要

Document-level relation extraction (RE) aims to extract relations among entities within a document, which is more complex than its sentence-level counterpart, especially in biomedical text mining. Chemical-disease relation (CDR) extraction aims to extract complex semantic relationships between chemicals and diseases entities in documents. In order to identify the relations within and across multiple sentences at the same time, existing methods try to build different document-level heterogeneous graph. However, the entity relation representations captured by these models do not make full use of the document information and disregard the noise introduced in the process of integrating various information. In this paper, we propose a novel model DAM-GAN to document-level biomedical RE, which can extract entity-level and mention-level representations of relation instances with R-GCN and Dual-Attention Multi-Instance Learning (DAM) respectively, and eliminate the noise with Generative Adversarial Network (GAN). Entity-level representations of relation instances model the semantic information of all entity pairs from the perspective of the whole document, while the mention-level representations from the perspective of mention pairs related to these entity pairs in different sentences. Therefore, entity- and mention-level representations can be better integrated to represent relation instances. Experimental results demonstrate that our model achieves superior performance on public document-level biomedical RE dataset BioCreative V Chemical Disease Relation(CDR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanhuan发布了新的文献求助10
刚刚
1秒前
oldrooster发布了新的文献求助10
2秒前
2秒前
我有一头小毛驴应助vv采纳,获得20
2秒前
稳重嘉熙发布了新的文献求助10
3秒前
Hello应助精明云朵采纳,获得10
4秒前
LINHAI完成签到,获得积分10
4秒前
致两千年前的你关注了科研通微信公众号
4秒前
Sinsoladad完成签到,获得积分10
5秒前
beifa完成签到,获得积分10
5秒前
WSYang完成签到,获得积分10
5秒前
5秒前
黑囡应助帆帆采纳,获得10
6秒前
jinqihui发布了新的文献求助10
6秒前
6秒前
万能图书馆应助ZJCYY采纳,获得10
7秒前
7秒前
wang完成签到,获得积分10
7秒前
7秒前
7秒前
平淡的中心完成签到,获得积分10
8秒前
彭甜发布了新的文献求助10
8秒前
9秒前
天天快乐应助缪甲烷采纳,获得10
9秒前
笑林发布了新的文献求助10
9秒前
搜集达人应助momo采纳,获得10
10秒前
Muya发布了新的文献求助10
10秒前
11秒前
ljs发布了新的文献求助10
11秒前
无敌小邓历险记完成签到,获得积分10
11秒前
beifa发布了新的文献求助10
12秒前
onionoo发布了新的文献求助10
12秒前
12秒前
13秒前
稳重嘉熙完成签到,获得积分10
14秒前
万能图书馆应助oldrooster采纳,获得10
14秒前
14秒前
16秒前
rr发布了新的文献求助30
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554736
求助须知:如何正确求助?哪些是违规求助? 3130574
关于积分的说明 9387593
捐赠科研通 2829927
什么是DOI,文献DOI怎么找? 1555757
邀请新用户注册赠送积分活动 726286
科研通“疑难数据库(出版商)”最低求助积分说明 715561