清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A hybrid metaheuristic approach using random forest and particle swarm optimization to study and evaluate backbreak in open-pit blasting

粒子群优化 均方误差 平均绝对百分比误差 元启发式 相关系数 随机森林 统计 数学 近似误差 岩石爆破 人工神经网络 决定系数 适应度函数 算法 计算机科学 数学优化 遗传算法 人工智能 工程类 岩土工程
作者
Yong Dai,Manoj Khandelwal,Yingui Qiu,Jian Zhou,Masoud Monjezi,Peixi Yang
出处
期刊:Neural Computing and Applications [Springer Nature]
卷期号:34 (8): 6273-6288 被引量:31
标识
DOI:10.1007/s00521-021-06776-z
摘要

Backbreak is a rock fracture problem that exceeds the limits of the last row of holes in an explosion operation. Excessive backbreak increases operational costs and also poses a threat to mine safety. In this regard, a new hybrid intelligence approach based on random forest (RF) and particle swarm optimization (PSO) is proposed for predicting backbreak with high accuracy to reduce the unsolicited phenomenon induced by backbreak in open-pit blasting. A data set of 234 samples with six input parameters including special drilling (SD), spacing (S), burden (B), hole length (L), stemming (T) and powder factor (PF) and one output parameter backbreak (BB) is set up in this study. Seven input combinations (one with six parameters, six with five parameters) are built to generate the optimal prediction model. The PSO algorithm is integrated with the RF algorithm to find the optimal hyper-parameters of each model and the fitness function, which is the mean absolute error (MAE) of ten cross-validations. The performance capacities of the optimal models are assessed using MAE, root-mean-square error (RMSE), Pearson correlation coefficient (R2) and mean absolute percentage error (MAPE). Findings demonstrated that the PSO–RF model combining L–S–B–T–PF with MAE of 0.0132 and 0.0568, RMSE of 0.0811 and 0.1686, R2 of 0.9990 and 0.9961 and MAPE of 0.0027 and 0.0116 in training and testing phases, respectively, has optimal prediction performance. The optimal PSO–RF models were compared with the classical artificial neural network, RF, genetic programming, support vector machine and convolutional neural network models and show that the PSO–RF model has superiority in predicting backbreak. The Gini index of each input variable has also been calculated in the RF model, which was 31.2 (L), 23.1 (S), 27.4 (B), 36.6 (T), 23.4 (PF) and 16.9 (SD), respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
科研狗的春天完成签到 ,获得积分10
9秒前
10秒前
11秒前
12秒前
輕瘋发布了新的文献求助10
15秒前
輕瘋完成签到,获得积分10
26秒前
27秒前
43秒前
47秒前
47秒前
58秒前
1分钟前
1分钟前
1分钟前
葛力完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ZTiamT发布了新的文献求助200
1分钟前
1分钟前
2分钟前
2分钟前
ZTiamT发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
FashionBoy应助忧郁菲鹰采纳,获得30
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732432
求助须知:如何正确求助?哪些是违规求助? 5339270
关于积分的说明 15322228
捐赠科研通 4878002
什么是DOI,文献DOI怎么找? 2620807
邀请新用户注册赠送积分活动 1570003
关于科研通互助平台的介绍 1526689