A hybrid metaheuristic approach using random forest and particle swarm optimization to study and evaluate backbreak in open-pit blasting

粒子群优化 均方误差 平均绝对百分比误差 元启发式 相关系数 随机森林 统计 数学 近似误差 岩石爆破 人工神经网络 决定系数 适应度函数 算法 计算机科学 数学优化 遗传算法 人工智能 工程类 岩土工程
作者
Yong Dai,Manoj Khandelwal,Yingui Qiu,Jian Zhou,Masoud Monjezi,Peixi Yang
出处
期刊:Neural Computing and Applications [Springer Nature]
卷期号:34 (8): 6273-6288 被引量:31
标识
DOI:10.1007/s00521-021-06776-z
摘要

Backbreak is a rock fracture problem that exceeds the limits of the last row of holes in an explosion operation. Excessive backbreak increases operational costs and also poses a threat to mine safety. In this regard, a new hybrid intelligence approach based on random forest (RF) and particle swarm optimization (PSO) is proposed for predicting backbreak with high accuracy to reduce the unsolicited phenomenon induced by backbreak in open-pit blasting. A data set of 234 samples with six input parameters including special drilling (SD), spacing (S), burden (B), hole length (L), stemming (T) and powder factor (PF) and one output parameter backbreak (BB) is set up in this study. Seven input combinations (one with six parameters, six with five parameters) are built to generate the optimal prediction model. The PSO algorithm is integrated with the RF algorithm to find the optimal hyper-parameters of each model and the fitness function, which is the mean absolute error (MAE) of ten cross-validations. The performance capacities of the optimal models are assessed using MAE, root-mean-square error (RMSE), Pearson correlation coefficient (R2) and mean absolute percentage error (MAPE). Findings demonstrated that the PSO–RF model combining L–S–B–T–PF with MAE of 0.0132 and 0.0568, RMSE of 0.0811 and 0.1686, R2 of 0.9990 and 0.9961 and MAPE of 0.0027 and 0.0116 in training and testing phases, respectively, has optimal prediction performance. The optimal PSO–RF models were compared with the classical artificial neural network, RF, genetic programming, support vector machine and convolutional neural network models and show that the PSO–RF model has superiority in predicting backbreak. The Gini index of each input variable has also been calculated in the RF model, which was 31.2 (L), 23.1 (S), 27.4 (B), 36.6 (T), 23.4 (PF) and 16.9 (SD), respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信的伊发布了新的文献求助10
1秒前
1秒前
Y82220057发布了新的文献求助10
1秒前
星辰大海应助Mcburneycc采纳,获得10
2秒前
2秒前
3秒前
东北信风完成签到,获得积分10
3秒前
3秒前
HP发布了新的文献求助10
4秒前
小奶狗关注了科研通微信公众号
5秒前
波波桑完成签到,获得积分10
5秒前
hhhyyyy发布了新的文献求助10
6秒前
大鲨鱼完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
英俊的铭应助林谷雨采纳,获得10
10秒前
prettymerry发布了新的文献求助10
11秒前
11秒前
善学以致用应助CLOUD采纳,获得10
11秒前
Y82220057完成签到,获得积分10
12秒前
12秒前
YY发布了新的文献求助10
13秒前
hider发布了新的文献求助60
13秒前
ww关闭了ww文献求助
14秒前
14秒前
刘一一发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
18秒前
开朗筮发布了新的文献求助30
18秒前
19秒前
生动惜灵应助HP采纳,获得10
20秒前
Owen应助大鱼儿采纳,获得10
20秒前
肉肉肉完成签到,获得积分10
20秒前
bqin发布了新的文献求助10
21秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
ETUDE DE LA TENSION SUPERFICIELLE ET DE LA DENSITE DU SYSTEME ETAIN-GALLIUM 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3439421
求助须知:如何正确求助?哪些是违规求助? 3036008
关于积分的说明 8961494
捐赠科研通 2723968
什么是DOI,文献DOI怎么找? 1494328
科研通“疑难数据库(出版商)”最低求助积分说明 690686
邀请新用户注册赠送积分活动 687132