剪接体
RNA剪接
生物
ATP酶
细胞生物学
生物化学
核糖核酸
酶
基因
作者
Hsin‐Chou Chen,C. K. Tseng,Rong‐Tzong Tsai,Che-Sheng Chung,Soo-Chen Cheng
摘要
The DEAH-box ATPase Prp43 is required for disassembly of the spliceosome after the completion of splicing or after the discard of the spliceosome due to a splicing defect. Prp43 associates with Ntr1 and Ntr2 to form the NTR complex and is recruited to the spliceosome via the interaction of Ntr2 and U5 component Brr2. Ntr2 alone can bind to U5 and to the spliceosome. To understand how NTR might mediate the disassembly of spliceosome intermediates, we arrested the spliceosome at various stages of the assembly pathway and assessed its susceptibility to disassembly. We found that NTR could catalyze the disassembly of affinity-purified spliceosomes arrested specifically after the ATP-dependent action of DEAH-box ATPase Prp2, Prp16, or Prp22 but not at steps before the action of these ATPases or upon their binding to the spliceosome. These results link spliceosome disassembly to the functioning of splicing ATPases. Analysis of the binding of Ntr2 to each splicing complex has revealed that the presence of Prp16 and Slu7, which also interact with Brr2, has a negative impact on Ntr2 binding. Our study provides insights into the mechanism by which NTR can be recruited to the spliceosome to mediate the disassembly of spliceosome intermediates when the spliceosome pathway is retarded, while disassembly is prevented in normal reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI