均值回归
夏普比率
波动性(金融)
文件夹
莱维过程
跳跃
跳跃扩散
数学
对数
期权估价
不对称
交易策略
应用数学
数学金融学
计量经济学
数学优化
计算机科学
经济
财务
数学分析
物理
量子力学
作者
Winston S. Buckley,Hongwei Long,M. Victoria Marshall
标识
DOI:10.1016/j.ejor.2016.01.050
摘要
We present numerical approximations of optimal portfolios in mispriced Lévy markets under asymmetric information for informed and uninformed investors having logarithmic preference. We apply our numerical scheme to Kou (2002) jump-diffusion markets by deriving analytic formulas for the first two derivatives of the underlying portfolio objective function which depend only on the Lévy measure of the jump-generating process. Optimal portfolios are then simulated using the Box–Muller algorithm, Newton’s method and incomplete Beta functions. Convergence dynamics and trajectories of sample paths of optimal portfolios for both investors are presented at different levels of information asymmetry, mispricing, horizon, asymmetry in the Kou density, jump intensity, volatility, mean-reversion speed, and Sharpe ratios. We also apply the proposed Newton’s algorithm to compute optimal portfolios for investors in Variance Gamma markets via instantaneous centralized moments of returns.
科研通智能强力驱动
Strongly Powered by AbleSci AI