(Invited) Density Functional Theory Modeling of Coupled Mechanical/Electrochemical Interfacial Processes during Li-Insertion into Silicon Anode

电解质 阳极 材料科学 无定形固体 电化学 碳酸乙烯酯 非晶硅 分解 化学工程 复合材料 化学物理 纳米技术 电极 晶体硅 光电子学 化学 物理化学 结晶学 有机化学 工程类
作者
Kevin Leung,Fernando Soto,Perla B. Balbuena
标识
DOI:10.1149/ma2015-02/2/187
摘要

Silicon anodes, unlike graphite widely used in commercial batteries, experience large (up to 400%) volumetric expansion after Li insertion during charging. This likely leads to unique SEI structures and formation mechanisms, especially at atomic lengthscales not readily probed using existing experimental techniques. We apply DFT modeling to model the incremental expansion of amorphous Li x Si as the Li-content (“x”) increases; examine how such expansion stretches or even cracks the model passivating layers; and how such SEI evolution/degradation leads to additional electrolyte decomposition. First we create a series of amorphous Li x Si slabs by incrementally increasing the Li content. The stoichiometry can range from LiSi to Li 13 Si 4 . The slabs are coated by a thin passivating layer (e.g., LiF z , which should form rapidly in the presence of FEC additives). During expansion, the surface films evolve, become stretched, or even crack. AIMD simulations of liquid ethylene carbonate (EC) films are then conducted on expanded Li x Si y with stretched passivating LiF x layers. The instantaneous, electronic voltage, responsible for SEI formation, is periodically computed to ensure the modeling conditions conform to the experimental voltage window. The effect of spatial inhomogeneity, e.g., holes in the passivating layer, on inducing voltage ”hot-spots” that can accelerate electrolyte decomposition, are highlighted. To some extent, the modeling work represents very fast Li insertion, on the time scale of SEI formation. Despite this, studying the stretching and potential breaking of model SEI layers can provide valuable insight concernin potentially unique SEI behavior on Si anode surfaces. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. 7060634 under the Batteries for Advanced Transportation Technologies (BATT) Program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corpo ration, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得30
刚刚
852应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
2秒前
森宝发布了新的文献求助10
2秒前
2秒前
orixero应助淡淡智宸采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
gattina驳回了Owen应助
4秒前
大个应助科研废采纳,获得10
11秒前
小陈完成签到,获得积分10
12秒前
星空下的皮先生完成签到,获得积分10
12秒前
之风百度完成签到 ,获得积分10
13秒前
14秒前
陈仲完成签到,获得积分10
15秒前
15秒前
16秒前
打打应助tzy采纳,获得10
16秒前
16秒前
我的Diy完成签到,获得积分10
17秒前
HUANG_黄发布了新的文献求助10
20秒前
自信南霜发布了新的文献求助10
20秒前
李咏贤发布了新的文献求助10
21秒前
21秒前
2065682138发布了新的文献求助10
22秒前
淡淡智宸发布了新的文献求助10
23秒前
dudu发布了新的文献求助10
24秒前
meimei发布了新的文献求助10
26秒前
yu完成签到 ,获得积分10
27秒前
27秒前
28秒前
fxb完成签到,获得积分10
29秒前
FIN应助陆靖易采纳,获得30
30秒前
30秒前
kunw完成签到,获得积分10
30秒前
SCINEXUS应助清新的宛丝采纳,获得50
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959791
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127539
捐赠科研通 3237976
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871758
科研通“疑难数据库(出版商)”最低求助积分说明 803019