纤维蛋白
细胞毒性T细胞
干细胞
间充质干细胞
癌症研究
医学
病理
免疫学
生物
体外
细胞生物学
生物化学
作者
Juli R. Bagó,Guillaume Joe Pegna,Onyi Okolie,Shawn Hingtgen
出处
期刊:Biomaterials
[Elsevier]
日期:2016-01-05
卷期号:84: 42-53
被引量:34
标识
DOI:10.1016/j.biomaterials.2016.01.007
摘要
Tumor-homing cytotoxic stem cell (SC) therapy is a promising new approach for treating the incurable brain cancer glioblastoma (GBM). However, problems of retaining cytotoxic SCs within the post-surgical GBM resection cavity are likely to significantly limit the clinical utility of this strategy. Here, we describe a new fibrin-based transplant approach capable of increasing cytotoxic SC retention and persistence within the resection cavity, yet remaining permissive to tumoritropic migration. This fibrin-based transplant can effectively treat both solid and post-surgical human GBM in mice. Using our murine model of image-guided model of GBM resection, we discovered that suspending human mesenchymal stem cells (hMSCS) in a fibrin matrix increased initial retention in the surgical resection cavity 2-fold and prolonged persistence in the cavity 3-fold compared to conventional delivery strategies. Time-lapse motion analysis revealed that cytotoxic hMSCs in the fibrin matrix remain tumoritropic, rapidly migrating from the fibrin matrix to co-localize with cultured human GBM cells. We encapsulated hMSCs releasing the cytotoxic agent TRAIL (hMSC-sTR) in fibrin, and found hMSC-sTR/fibrin therapy reduced the viability of multiple 3-D human GBM spheroids and regressed established human GBM xenografts 3-fold in 11 days. Mimicking clinical therapy of surgically resected GBM, intra-cavity seeding of therapeutic hMSC-sTR encapsulated in fibrin reduced post-surgical GBM volumes 6-fold, increased time to recurrence 4-fold, and prolonged median survival from 15 to 36 days compared to control-treated animals. Fibrin-based SC therapy could represent a clinically compatible, viable treatment to suppress recurrence of post-surgical GBM and other lethal cancer types.
科研通智能强力驱动
Strongly Powered by AbleSci AI