Isolation of a Novel Cutinase Homolog with Polyethylene Terephthalate-Degrading Activity from Leaf-Branch Compost by Using a Metagenomic Approach

角质酶 角质 脂肪酶 生物化学 三丁酸甘油酯 水解 化学 生物
作者
Sintawee Sulaiman,Saya Yamato,Eiko Kanaya,Joong-Jae Kim,Yuichi Koga,Kazufumi Takano,Shigenori Kanaya
出处
期刊:Applied and Environmental Microbiology [American Society for Microbiology]
卷期号:78 (5): 1556-1562 被引量:486
标识
DOI:10.1128/aem.06725-11
摘要

ABSTRACT The gene encoding a cutinase homolog, LC-cutinase, was cloned from a fosmid library of a leaf-branch compost metagenome by functional screening using tributyrin agar plates. LC-cutinase shows the highest amino acid sequence identity of 59.7% to Thermomonospora curvata lipase. It also shows the 57.4% identity to Thermobifida fusca cutinase. When LC-cutinase without a putative signal peptide was secreted to the periplasm of Escherichia coli cells with the assistance of the pelB leader sequence, more than 50% of the recombinant protein, termed LC-cutinase*, was excreted into the extracellular medium. It was purified and characterized. LC-cutinase* hydrolyzed various fatty acid monoesters with acyl chain lengths of 2 to 18, with a preference for short-chain substrates (C 4 substrate at most) most optimally at pH 8.5 and 50°C, but could not hydrolyze olive oil. It lost activity with half-lives of 40 min at 70°C and 7 min at 80°C. LC-cutinase* had an ability to degrade poly(ε-caprolactone) and polyethylene terephthalate (PET). The specific PET-degrading activity of LC-cutinase* was determined to be 12 mg/h/mg of enzyme (2.7 mg/h/μkat of p NP-butyrate-degrading activity) at pH 8.0 and 50°C. This activity is higher than those of the bacterial and fungal cutinases reported thus far, suggesting that LC-cutinase* not only serves as a good model for understanding the molecular mechanism of PET-degrading enzyme but also is potentially applicable for surface modification and degradation of PET.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨书朋发布了新的文献求助10
刚刚
cy0824发布了新的文献求助30
1秒前
2秒前
2秒前
2秒前
酷波er应助陈老板采纳,获得10
3秒前
和功耗过高完成签到,获得积分20
4秒前
老肥彭发布了新的文献求助10
5秒前
5秒前
上官若男应助mafukairi采纳,获得10
5秒前
pbc关注了科研通微信公众号
6秒前
毛豆爸爸应助整齐南莲采纳,获得10
7秒前
今麦郎发布了新的文献求助10
8秒前
英俊的铭应助炖地瓜采纳,获得10
8秒前
9秒前
9秒前
所所应助太阳采纳,获得30
10秒前
13秒前
申思发布了新的文献求助10
13秒前
14秒前
无花果应助老肥彭采纳,获得10
14秒前
14秒前
打打应助无理取闹采纳,获得10
15秒前
15秒前
小书虫完成签到,获得积分10
15秒前
15秒前
搜集达人应助xww采纳,获得10
16秒前
zhang发布了新的文献求助10
16秒前
xgg发布了新的文献求助30
18秒前
18秒前
Zzhen完成签到,获得积分10
18秒前
研友_89mvO8发布了新的文献求助100
19秒前
cc发布了新的文献求助10
19秒前
19秒前
巫念云完成签到,获得积分10
20秒前
再干一杯完成签到,获得积分10
20秒前
ET发布了新的文献求助10
20秒前
申思完成签到,获得积分10
21秒前
21秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133348
求助须知:如何正确求助?哪些是违规求助? 2784511
关于积分的说明 7767015
捐赠科研通 2439679
什么是DOI,文献DOI怎么找? 1296929
科研通“疑难数据库(出版商)”最低求助积分说明 624809
版权声明 600771