清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization

CMA-ES公司 水准点(测量) 计算机科学 算法 混合算法(约束满足) 进化策略 人口 数学优化 进化计算 数学 社会学 地理 约束逻辑程序设计 约束规划 人口学 随机规划 大地测量学
作者
Tianjun Liao,Thomas Stützle
出处
期刊:Congress on Evolutionary Computation 被引量:48
标识
DOI:10.1109/cec.2013.6557796
摘要

In this article, we benchmark a new hybrid algorithm for continuous optimization on the 28 functions for the CEC 2013 special session and competition on real-parameter optimization. Our algorithm makes a loose coupling of (i) IPOP-CMA-ES, an advanced evolution strategy with covariance matrix adaptation integrated with an occasional restart strategy and increasing population size, and (ii) an iterated local search (ILS) algorithm that repeatedly applies a different local search from CMA-ES to perturbations of previous high-quality solutions. The central idea of the hybrid algorithm is to let IPOP-CMA-ES and ILS compete in an initial competition phase and then the winner of the two algorithms is deployed for the remainder of the computation time. A cooperative element between the two algorithms is implemented through a solution exchange from IPOP-CMA-ES to ILS. Hence, one may classify this algorithm as a loosely coupled cooperative-competitive algorithm for continuous optimization. We compare the computational results of this hybrid algorithm to the default version and a tuned version of IPOP-CMA-ES to illustrate the improvement that is obtained through this hybrid algorithm. This comparison is interesting since IPOP-CMA-ES is a state-of-the-art algorithm which somehow has become a standard benchmark to compare against for any new algorithmic proposals for continuous optimization. Our computational results show that the proposed hybrid algorithm performs significantly better than the default and tuned IPOP-CMA-ES variants on the problems of dimension 30 and 50. Thus, these results also indicate that the hybrid algorithm reaches very high performance on the CEC 2013 benchmark set.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
21秒前
Ajay完成签到 ,获得积分10
21秒前
Klaus完成签到 ,获得积分10
22秒前
胖小羊完成签到 ,获得积分10
56秒前
方白秋完成签到,获得积分0
1分钟前
1分钟前
Ajay发布了新的文献求助30
1分钟前
CipherSage应助丽海张采纳,获得30
1分钟前
赵一完成签到 ,获得积分10
2分钟前
2分钟前
Prometheusss发布了新的文献求助10
2分钟前
丽海张发布了新的文献求助30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
文静身边充满小确幸完成签到 ,获得积分10
2分钟前
2分钟前
Prometheusss发布了新的文献求助10
2分钟前
Prometheusss完成签到,获得积分10
3分钟前
3分钟前
深海理疗发布了新的文献求助10
3分钟前
al完成签到 ,获得积分0
3分钟前
Prometheusss发布了新的文献求助10
3分钟前
下文献的蜉蝣完成签到 ,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
洁净百川完成签到 ,获得积分10
4分钟前
4分钟前
Prometheusss发布了新的文献求助10
4分钟前
fufufu123完成签到 ,获得积分10
5分钟前
nuoberry发布了新的文献求助30
5分钟前
景安白完成签到 ,获得积分10
5分钟前
6分钟前
nuoberry发布了新的文献求助10
6分钟前
科研通AI2S应助景安白采纳,获得30
6分钟前
田様应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561583
求助须知:如何正确求助?哪些是违规求助? 4646662
关于积分的说明 14678756
捐赠科研通 4588002
什么是DOI,文献DOI怎么找? 2517261
邀请新用户注册赠送积分活动 1490549
关于科研通互助平台的介绍 1461583