费米能级
准费米能级
X射线光电子能谱
紫外光电子能谱
带隙
价(化学)
材料科学
费米能量
光电发射光谱学
基质(水族馆)
凝聚态物理
半金属
薄膜
电子能带结构
化学
光电子学
纳米技术
核磁共振
物理
海洋学
有机化学
量子力学
地质学
电子
作者
Elisa M. Miller,Yixin Zhao,Candy C. Mercado,Sudip K. Saha,Joseph M. Luther,Kai Zhu,Vladan Stevanović,Craig L. Perkins,Jao van de Lagemaat
摘要
Using X-ray and ultraviolet photoelectron spectroscopy, the surface band positions of solution-processed CH3NH3PbI3 perovskite thin films deposited on an insulating substrate (Al2O3), various n-type (TiO2, ZrO2, ZnO, and F:SnO2 (FTO)) substrates, and various p-type (PEDOT:PSS, NiO, and Cu2O) substrates are studied. Many-body GW calculations of the valence band density of states, with spin–orbit interactions included, show a clear correspondence with our experimental spectra and are used to confirm our assignment of the valence band maximum. These surface-sensitive photoelectron spectroscopy measurements result in shifting of the CH3NH3PbI3 valence band position relative to the Fermi energy as a function of substrate type, where the valence band to Fermi energy difference reflects the substrate type (insulating-, n-, or p-type). Specifically, the insulating- and n-type substrates increase the CH3NH3PbI3 valence band to Fermi energy difference to the extent of pinning the conduction band to the Fermi level; whereas, the p-type substrates decrease the valence band to Fermi energy difference. This observation implies that the substrate's properties enable control over the band alignment of CH3NH3PbI3 perovskite thin-film devices, potentially allowing for new device architectures as well as more efficient devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI