Do Digital Platforms Reduce Moral Hazard? The Case of Uber and Taxis

出租车 TRIPS体系结构 激励 道德风险 业务 计算机科学 布线(电子设计自动化) 运筹学 运输工程 经济 微观经济学 工程类 计算机网络
作者
Meng Liu,Erik Brynjolfsson,Jason Dowlatabadi
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (8): 4665-4685 被引量:78
标识
DOI:10.1287/mnsc.2020.3721
摘要

Digital platforms provide a variety of technology-enabled tools that enhance market transparency, such as real-time monitoring, ratings of buyers and sellers, and low-cost complaint channels. How do these innovations affect moral hazard and service quality? We investigate this problem by comparing driver routing choices and efficiency on a large digital platform, Uber, with traditional taxis. The identification is enabled by matching taxi and Uber trips at the origin-destination-time level so they are subject to the same underlying optimal route, by exploiting characteristics of the pricing schemes that differentially affect the incentives of taxi and Uber drivers in various circumstances, and by examining changes in behavior when drivers switch from taxis to Uber. We find that (1) taxi drivers route longer in distance than matched Uber drivers on metered airport routes by an average of 8%, with nonlocal passengers on airport routes experiencing even longer routing; (2) no such long routing is found for short trips in dense markets (e.g., within-Manhattan trips) or airport trips with a flat fare; and (3) long routing in general leads to longer travel time, instead of saving passengers time. These findings are consistent with digital platform designs reducing driver moral hazard, but not with competing explanations such as driver selection or differences in driver navigation technologies. We also find evidence of Uber drivers’ long routing on airport trips in times of surge pricing, suggesting that the tech-enabled market designs may not be binding in our setting. This paper was accepted by Chris Forman, information systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助zhuyinghao采纳,获得10
2秒前
香妃完成签到,获得积分10
3秒前
之星君完成签到,获得积分10
3秒前
3秒前
高小猴儿发布了新的文献求助30
4秒前
成就的如曼完成签到,获得积分20
5秒前
4399com应助科研通管家采纳,获得10
5秒前
浅晨发布了新的文献求助30
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
双黄应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
6秒前
8秒前
机灵的海蓝完成签到,获得积分10
8秒前
心珩完成签到,获得积分10
8秒前
大力沛萍发布了新的文献求助10
9秒前
荷兰香猪完成签到,获得积分10
9秒前
豌豆发布了新的文献求助10
13秒前
大力沛萍完成签到,获得积分10
15秒前
luckinstar完成签到,获得积分10
18秒前
李爱国应助豌豆采纳,获得10
19秒前
xiaxia完成签到 ,获得积分10
19秒前
25秒前
高小猴儿完成签到,获得积分10
27秒前
27秒前
金阿垚在科研完成签到,获得积分10
28秒前
ML发布了新的文献求助10
30秒前
30秒前
卡萨卡萨发布了新的文献求助20
31秒前
共享精神应助noobmaster采纳,获得10
32秒前
32秒前
清水发布了新的文献求助10
33秒前
小生完成签到,获得积分10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309840
求助须知:如何正确求助?哪些是违规求助? 2943043
关于积分的说明 8512388
捐赠科研通 2618126
什么是DOI,文献DOI怎么找? 1430822
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649478