Association between negative cognitive bias and depression: A symptom-level approach.

心理学 烦躁 悲伤 心理信息 认知 贝克抑郁量表 萧条(经济学) 临床心理学 联想(心理学) 认知偏差 精神科 愤怒 焦虑 梅德林 政治学 法学 经济 心理治疗师 宏观经济学
作者
Christopher G. Beevers,Michael C Mullarkey,Justin Dainer‐Best,Rochelle A. Stewart,Jocelyn Labrada,John J. B. Allen,John E. McGeary,Jason Shumake
出处
期刊:Journal of Abnormal Psychology [American Psychological Association]
卷期号:128 (3): 212-227 被引量:100
标识
DOI:10.1037/abn0000405
摘要

Cognitive models of depression posit that negatively biased self-referent processing and attention have important roles in the disorder. However, depression is a heterogeneous collection of symptoms and all symptoms are unlikely to be associated with these negative cognitive biases. The current study involved 218 community adults whose depression ranged from no symptoms to clinical levels of depression. Random forest machine learning was used to identify the most important depression symptom predictors of each negative cognitive bias. Depression symptoms were measured with the Beck Depression Inventory-II. Model performance was evaluated using predictive R-squared (Rpred2), the expected variance explained in data not used to train the algorithm, estimated by 10 repetitions of 10-fold cross-validation. Using the self-referent encoding task (SRET), depression symptoms explained 34% to 45% of the variance in negative self-referent processing. The symptoms of sadness, self-dislike, pessimism, feelings of punishment, and indecision were most important. Notably, many depression symptoms made virtually no contribution to this prediction. In contrast, for attention bias for sad stimuli, measured with the dot-probe task using behavioral reaction time (RT) and eye gaze metrics, no reliable symptom predictors were identified. Findings indicate that a symptom-level approach may provide new insights into which symptoms, if any, are associated with negative cognitive biases in depression. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心渊思完成签到,获得积分10
刚刚
sci666完成签到,获得积分10
1秒前
1秒前
叙温雨发布了新的文献求助10
2秒前
3秒前
3秒前
呵呵呵呵呵呵关注了科研通微信公众号
3秒前
传奇3应助科研通管家采纳,获得10
4秒前
科研通AI5应助海潮采纳,获得30
4秒前
852应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得30
5秒前
Orange应助科研通管家采纳,获得10
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
pophoo发布了新的文献求助10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
实验好难应助科研通管家采纳,获得10
5秒前
追寻南晴应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得30
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
yaoyao发布了新的文献求助10
6秒前
无心的星月完成签到,获得积分20
6秒前
负责灵萱完成签到 ,获得积分10
7秒前
赘婿应助冬瓜采纳,获得10
8秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835