清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and validation of a radiomics nomogram for identifying invasiveness of pulmonary adenocarcinomas appearing as subcentimeter ground-glass opacity nodules

医学 无线电技术 列线图 逻辑回归 放射科 Lasso(编程语言) 磨玻璃样改变 接收机工作特性 核医学 人工智能 腺癌 内科学 计算机科学 癌症 万维网
作者
Wei Zhao,Yanan Xu,Zhiming Yang,Yingli Sun,Cheng Li,Liang Jin,Pan Gao,Wenjie He,Peijun Wang,Hongli Shi,Yanqing Hua,Ming Li
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:112: 161-168 被引量:69
标识
DOI:10.1016/j.ejrad.2019.01.021
摘要

The aim of the present study was to develop and validate a radiomics-based nomogram for differentiation of pre-invasive lesions from invasive lesions that appearing as ground-glass opacity nodules (GGNs) ≤10 mm (sub-centimeter) in diameter at CT. A total of 542 consecutive patients with 626 pathologically confirmed pulmonary subcentimeter GGNs were retrospectively studied from October 2011 to September 2017. All the GGNs were divided into a training set (n = 334) and a validation set (n = 292). Researchers extracted 475 radiomics features from the plain CT images; a radiomics signature was constructed with the least absolute shrinkage and selection operator (LASSO) based on multivariable regression in the training set. Based on the multivariable logistic regression model, a radiomics nomogram was developed in the training set. The performance of the nomogram was evaluated with respect to its calibration, discrimination, and clinical-utility and this was assessed in the validation set. The constructed radiomics signature, which consisted of 15 radiomics features, was significantly associated with the invasiveness of subcentimeter GGNs (P < 0.0001 for both training set and validation set). To build the nomogram model, radiomics signature and mean CT value were used. The nomogram model demonstrated good discrimination and calibration in both training set (C-index, 0.716 [95% CI, 0.632 to 0.801]) and validation set (C-index, 0.707 [95% CI, 0.625 to 0.788]). Decision curve analysis (DCA) indicated that radiomics-based nomogram was clinically useful. A radiomics-based nomogram that incorporates both radiomics signature and mean CT value is constructed in the study, which can be conveniently used to facilitate the preoperative individualized prediction of the invasiveness in patients with subcentimeter GGNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
13秒前
14秒前
19秒前
传奇3应助clairevox采纳,获得10
20秒前
31秒前
量子星尘发布了新的文献求助30
34秒前
隐形大白完成签到 ,获得积分10
36秒前
40秒前
sxx发布了新的文献求助10
44秒前
量子星尘发布了新的文献求助10
47秒前
小美酱完成签到 ,获得积分10
55秒前
量子星尘发布了新的文献求助10
57秒前
poki完成签到 ,获得积分10
59秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
香蕉觅云应助烟消云散采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
专一的白萱完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
舒心豪英发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
科研通AI5应助hihi采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Manzia完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661074
求助须知:如何正确求助?哪些是违规求助? 3222214
关于积分的说明 9744064
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538