Self-Attentive Sequential Recommendation

计算机科学 循环神经网络 人工智能 推荐系统 语义学(计算机科学) 背景(考古学) 机器学习 马尔可夫链 隐马尔可夫模型 特征(语言学) 马尔可夫过程 人工神经网络 哲学 程序设计语言 古生物学 统计 生物 语言学 数学
作者
Wang-Cheng Kang,Julian McAuley
标识
DOI:10.1109/icdm.2018.00035
摘要

Sequential dynamics are a key feature of many modern recommender systems, which seek to capture the 'context' of users' activities on the basis of actions they have performed recently. To capture such patterns, two approaches have proliferated: Markov Chains (MCs) and Recurrent Neural Networks (RNNs). Markov Chains assume that a user's next action can be predicted on the basis of just their last (or last few) actions, while RNNs in principle allow for longer-term semantics to be uncovered. Generally speaking, MC-based methods perform best in extremely sparse datasets, where model parsimony is critical, while RNNs perform better in denser datasets where higher model complexity is affordable. The goal of our work is to balance these two goals, by proposing a self-attention based sequential model (SASRec) that allows us to capture long-term semantics (like an RNN), but, using an attention mechanism, makes its predictions based on relatively few actions (like an MC). At each time step, SASRec seeks to identify which items are 'relevant' from a user's action history, and use them to predict the next item. Extensive empirical studies show that our method outperforms various state-of-the-art sequential models (including MC/CNN/RNN-based approaches) on both sparse and dense datasets. Moreover, the model is an order of magnitude more efficient than comparable CNN/RNN-based models. Visualizations on attention weights also show how our model adaptively handles datasets with various density, and uncovers meaningful patterns in activity sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
畅快行云完成签到,获得积分10
刚刚
刚刚
淡定草丛完成签到 ,获得积分10
刚刚
落寞怀柔完成签到,获得积分10
刚刚
1秒前
小猫咪完成签到,获得积分10
1秒前
1秒前
Jiancui完成签到,获得积分10
1秒前
斯文败类应助JOJO采纳,获得10
1秒前
彭于晏应助拼搏亦松采纳,获得10
1秒前
沫柠完成签到 ,获得积分10
3秒前
完美世界应助Ll采纳,获得10
4秒前
rubbertail完成签到,获得积分20
4秒前
黑大帅完成签到,获得积分10
4秒前
科研通AI5应助风中以菱采纳,获得10
5秒前
Lea完成签到,获得积分10
5秒前
6秒前
郑开司09发布了新的文献求助10
6秒前
minmin完成签到,获得积分10
6秒前
乐乐应助科研通管家采纳,获得10
7秒前
雪白问兰应助科研通管家采纳,获得50
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
难过的翎应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
Hungrylunch应助科研通管家采纳,获得20
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
prosperp应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
8秒前
Hello应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672