Self-Attentive Sequential Recommendation

计算机科学 循环神经网络 人工智能 推荐系统 语义学(计算机科学) 背景(考古学) 机器学习 马尔可夫链 隐马尔可夫模型 特征(语言学) 马尔可夫过程 人工神经网络 哲学 程序设计语言 古生物学 统计 生物 语言学 数学
作者
Wang-Cheng Kang,Julian McAuley
标识
DOI:10.1109/icdm.2018.00035
摘要

Sequential dynamics are a key feature of many modern recommender systems, which seek to capture the 'context' of users' activities on the basis of actions they have performed recently. To capture such patterns, two approaches have proliferated: Markov Chains (MCs) and Recurrent Neural Networks (RNNs). Markov Chains assume that a user's next action can be predicted on the basis of just their last (or last few) actions, while RNNs in principle allow for longer-term semantics to be uncovered. Generally speaking, MC-based methods perform best in extremely sparse datasets, where model parsimony is critical, while RNNs perform better in denser datasets where higher model complexity is affordable. The goal of our work is to balance these two goals, by proposing a self-attention based sequential model (SASRec) that allows us to capture long-term semantics (like an RNN), but, using an attention mechanism, makes its predictions based on relatively few actions (like an MC). At each time step, SASRec seeks to identify which items are 'relevant' from a user's action history, and use them to predict the next item. Extensive empirical studies show that our method outperforms various state-of-the-art sequential models (including MC/CNN/RNN-based approaches) on both sparse and dense datasets. Moreover, the model is an order of magnitude more efficient than comparable CNN/RNN-based models. Visualizations on attention weights also show how our model adaptively handles datasets with various density, and uncovers meaningful patterns in activity sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Stroeve发布了新的文献求助10
1秒前
SciGPT应助写得出发的中采纳,获得10
3秒前
3秒前
5秒前
plu完成签到 ,获得积分20
6秒前
要减肥的孤容完成签到,获得积分10
6秒前
等待睿渊完成签到,获得积分10
6秒前
huyz发布了新的文献求助10
8秒前
情怀应助木木采纳,获得30
8秒前
guoxihan完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
高贵黄豆完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
小曾应助645654564采纳,获得10
16秒前
木木给木木的求助进行了留言
17秒前
等待睿渊发布了新的文献求助30
19秒前
热心市民小红花应助冰琪采纳,获得10
20秒前
bofu完成签到,获得积分10
20秒前
任性一兰完成签到,获得积分20
20秒前
漠阳完成签到,获得积分10
21秒前
xiaxia完成签到 ,获得积分10
23秒前
要减肥的孤容关注了科研通微信公众号
24秒前
湛湛发布了新的文献求助10
25秒前
123完成签到 ,获得积分10
26秒前
沙拉依丁完成签到,获得积分10
28秒前
小刺猬完成签到,获得积分10
29秒前
丘比特应助GooJohn采纳,获得10
29秒前
义气的羽毛完成签到,获得积分10
30秒前
Que完成签到 ,获得积分10
30秒前
caibaozi应助草莓布丁采纳,获得80
31秒前
小刺猬发布了新的文献求助10
32秒前
CorisKen应助缥缈问柳采纳,获得20
34秒前
34秒前
37秒前
yubin.cao完成签到,获得积分10
39秒前
尊敬依珊发布了新的文献求助10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052