Detecting Functionality-Specific Vulnerabilities via Retrieving Individual Functionality-Equivalent APIs in Open-Source Repositories

计算机科学 图形 卷积神经网络 可扩展性 人工智能 编码 边距(机器学习) 理论计算机科学 模式识别(心理学) 机器学习 生物化学 数据库 基因 化学
作者
Thomas Kipf,Max Welling
标识
DOI:10.4230/lipics.ecoop.2025.6
摘要

Functionality-specific vulnerabilities, which mainly occur in Application Programming Interfaces (APIs) with specific functionalities, are crucial for software developers to detect and avoid. When detecting individual functionality-specific vulnerabilities, the existing two categories of approaches are ineffective because they consider only the API bodies and are unable to handle diverse implementations of functionality-equivalent APIs. To effectively detect functionality-specific vulnerabilities, we propose APISS, the first approach to utilize API doc strings and signatures instead of API bodies. APISS first retrieves functionality-equivalent APIs for APIs with existing vulnerabilities and then migrates Proof-of-Concepts (PoCs) of the existing vulnerabilities for newly detected vulnerable APIs. To retrieve functionality-equivalent APIs, we leverage a Large Language Model for API embedding to improve the accuracy and address the effectiveness and scalability issues suffered by the existing approaches. To migrate PoCs of the existing vulnerabilities for newly detected vulnerable APIs, we design a semi-automatic schema to substantially reduce manual costs. We conduct a comprehensive evaluation to empirically compare APISS with four state-of-the-art approaches of detecting vulnerabilities and two state-of-the-art approaches of retrieving functionality-equivalent APIs. The evaluation subjects include 180 widely used Java repositories using 10 existing vulnerabilities, along with their PoCs. The results show that APISS effectively retrieves functionality-equivalent APIs, achieving a Top-1 Accuracy of 0.81 while the best of the baselines under comparison achieves only 0.55. APISS is highly efficient: the manual costs are within 10 minutes per vulnerability and the end-to-end runtime overhead of testing one candidate API is less than 2 hours. APISS detects 179 new vulnerabilities and receives 60 new CVE IDs, bringing high value to security practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫的安雁完成签到 ,获得积分10
1秒前
2秒前
摸鱼ing完成签到,获得积分10
3秒前
skyangar发布了新的文献求助10
3秒前
敏哇哇哇发布了新的文献求助10
3秒前
4秒前
Jayjay发布了新的文献求助10
4秒前
Ali完成签到,获得积分10
4秒前
我我完成签到,获得积分20
4秒前
5秒前
Yi关注了科研通微信公众号
6秒前
6秒前
隐形曼青应助彩色的乐驹采纳,获得10
7秒前
7秒前
7秒前
7秒前
华仔应助柯向薇采纳,获得10
7秒前
Northtime完成签到,获得积分10
7秒前
天天快乐应助kong采纳,获得10
7秒前
Yanhai发布了新的文献求助10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
朱猪仔完成签到,获得积分20
8秒前
8秒前
隐形元绿完成签到,获得积分10
8秒前
8秒前
emma完成签到,获得积分10
8秒前
8秒前
小夏完成签到,获得积分10
9秒前
xuhang发布了新的文献求助10
9秒前
李素丽发布了新的文献求助10
9秒前
10秒前
Lament完成签到,获得积分10
10秒前
10秒前
所所应助下雨了采纳,获得10
10秒前
温水完成签到 ,获得积分10
10秒前
着急的棉花糖完成签到,获得积分20
10秒前
Syyyy完成签到,获得积分10
11秒前
蒸馏水发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123