Detecting Functionality-Specific Vulnerabilities via Retrieving Individual Functionality-Equivalent APIs in Open-Source Repositories

计算机科学 图形 卷积神经网络 可扩展性 人工智能 编码 边距(机器学习) 理论计算机科学 模式识别(心理学) 机器学习 生物化学 数据库 基因 化学
作者
Thomas Kipf,Max Welling
标识
DOI:10.4230/lipics.ecoop.2025.6
摘要

Functionality-specific vulnerabilities, which mainly occur in Application Programming Interfaces (APIs) with specific functionalities, are crucial for software developers to detect and avoid. When detecting individual functionality-specific vulnerabilities, the existing two categories of approaches are ineffective because they consider only the API bodies and are unable to handle diverse implementations of functionality-equivalent APIs. To effectively detect functionality-specific vulnerabilities, we propose APISS, the first approach to utilize API doc strings and signatures instead of API bodies. APISS first retrieves functionality-equivalent APIs for APIs with existing vulnerabilities and then migrates Proof-of-Concepts (PoCs) of the existing vulnerabilities for newly detected vulnerable APIs. To retrieve functionality-equivalent APIs, we leverage a Large Language Model for API embedding to improve the accuracy and address the effectiveness and scalability issues suffered by the existing approaches. To migrate PoCs of the existing vulnerabilities for newly detected vulnerable APIs, we design a semi-automatic schema to substantially reduce manual costs. We conduct a comprehensive evaluation to empirically compare APISS with four state-of-the-art approaches of detecting vulnerabilities and two state-of-the-art approaches of retrieving functionality-equivalent APIs. The evaluation subjects include 180 widely used Java repositories using 10 existing vulnerabilities, along with their PoCs. The results show that APISS effectively retrieves functionality-equivalent APIs, achieving a Top-1 Accuracy of 0.81 while the best of the baselines under comparison achieves only 0.55. APISS is highly efficient: the manual costs are within 10 minutes per vulnerability and the end-to-end runtime overhead of testing one candidate API is less than 2 hours. APISS detects 179 new vulnerabilities and receives 60 new CVE IDs, bringing high value to security practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巾帼发布了新的文献求助10
刚刚
核桃应助独特秋双采纳,获得20
刚刚
得失完成签到 ,获得积分10
刚刚
建浩完成签到,获得积分10
1秒前
李健应助高登登采纳,获得10
1秒前
明太鱼完成签到,获得积分20
1秒前
1秒前
2秒前
pangzou发布了新的文献求助10
2秒前
桑落发布了新的文献求助10
3秒前
評評发布了新的文献求助10
3秒前
脑洞疼应助pan采纳,获得10
4秒前
11完成签到,获得积分10
4秒前
LYW完成签到,获得积分10
4秒前
无情的镜子完成签到,获得积分10
4秒前
英姑应助高高高高高一剑采纳,获得10
5秒前
化学兔八哥完成签到,获得积分10
5秒前
闪闪幼南完成签到,获得积分10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
bkagyin应助巾帼采纳,获得10
7秒前
sanmu完成签到,获得积分10
7秒前
7秒前
勤恳雅莉应助centlay采纳,获得80
7秒前
8秒前
丘比特应助桑落采纳,获得10
8秒前
有趣的灵魂完成签到,获得积分10
8秒前
Hommand_藏山完成签到,获得积分10
9秒前
OK完成签到,获得积分10
9秒前
冷酷乐天发布了新的文献求助10
9秒前
科研木头人完成签到,获得积分10
9秒前
自然的平蓝完成签到,获得积分10
10秒前
Xilli完成签到 ,获得积分10
10秒前
zhx完成签到,获得积分10
10秒前
10秒前
风雨晴鸿完成签到 ,获得积分10
10秒前
10秒前
ajuehdj完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997