数学
本征函数
有界函数
领域(数学分析)
订单(交换)
欧米茄
边界(拓扑)
特征向量
渐近展开
常量(计算机编程)
兰姆达
数学分析
零(语言学)
渐近分析
组合数学
边值问题
数学物理
物理
量子力学
语言学
哲学
计算机科学
经济
程序设计语言
财务
作者
Matteo Dalla Riva,Luigi Provenzano
出处
期刊:Siam Journal on Mathematical Analysis
[Society for Industrial and Applied Mathematics]
日期:2018-01-01
卷期号:50 (3): 2928-2967
被引量:6
摘要
In a smooth bounded domain $\Omega$ of $\mathbb R^2$ we consider the spectral problem $-\Delta u_{\varepsilon}= \lambda(\varepsilon)\rho_{\varepsilon}u_{\varepsilon}$ with boundary condition $\frac{\partial u_{\varepsilon}}{\partial\nu}=0$. The factor $\rho_{\varepsilon}$ plays the role of a mass density, and it is equal to a constant of order $\varepsilon^{-1}$ in an $\varepsilon$-neighborhood of the boundary and to a constant of order $\varepsilon$ in the rest of $\Omega$. We study the asymptotic behavior of the eigenvalues $\lambda(\varepsilon)$ and the eigenfunctions $u_{\varepsilon}$ as $\varepsilon$ tends to zero. We obtain explicit formulas for the first and second terms of the corresponding asymptotic expansions by exploiting the solutions of certain auxiliary boundary value problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI