已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A 3-mRNA-based prognostic signature of survival in oral squamous cell carcinoma

列线图 肿瘤科 医学 接收机工作特性 队列 内科学 小桶 头颈部鳞状细胞癌 生存分析 比例危险模型 Lasso(编程语言) 单变量 基因表达 生物 转录组 癌症 基因 多元统计 头颈部癌 机器学习 遗传学 万维网 计算机科学
作者
Ruoyan Cao,Qiqi Wu,Qiulan Li,Meiling Yao,Hongbo Zhou
出处
期刊:PeerJ [PeerJ]
卷期号:7: e7360-e7360 被引量:23
标识
DOI:10.7717/peerj.7360
摘要

Oral squamous cell carcinoma (OSCC) is the most common type of head and neck squamous cell carcinoma with an unsatisfactory prognosis. The aim of this study was to identify potential prognostic mRNA biomarkers of OSCC based on analysis of The Cancer Genome Atlas (TCGA).Expression profiles and clinical data of OSCC patients were collected from TCGA database. Univariate Cox analysis and the least absolute shrinkage and selection operator Cox (LASSO Cox) regression were used to primarily screen prognostic biomarkers. Then multivariate Cox analysis was performed to build a prognostic model based on the selected prognostic mRNAs. Nomograms were generated to predict the individual's overall survival at 3 and 5 years. The model performance was assessed by the time-dependent receiver operating characteristic (ROC) curve and calibration plot in both training cohort and validation cohort (GSE41613 from NCBI GEO databases). In addition, machine learning was used to assess the importance of risk factors of OSCC. Finally, in order to explore the potential mechanisms of OSCC, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was completed.Three mRNAs (CLEC3B, C6 and CLCN1) were finally identified as a prognostic biomarker pattern. The risk score was imputed as: (-0.38602 × expression level of CLEC3B) + (-0.20632 × expression level of CLCN1) + (0.31541 × expression level of C6). In the TCGA training cohort, the area under the curve (AUC) was 0.705 and 0.711 for 3- and 5-year survival, respectively. In the validation cohort, AUC was 0.718 and 0.717 for 3- and 5-year survival. A satisfactory agreement between predictive values and observation values was demonstrated by the calibration curve in the probabilities of 3- and 5- year survival in both cohorts. Furthermore, machine learning identified the 3-mRNA signature as the most important risk factor to survival of OSCC. Neuroactive ligand-receptor interaction was most enriched mostly in KEGG pathway analysis.A 3-mRNA signature (CLEC3B, C6 and CLCN1) successfully predicted the survival of OSCC patients in both training and test cohort. In addition, this signature was an independent and the most important risk factor of OSCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33应助优秀的新之采纳,获得10
1秒前
半夏完成签到 ,获得积分10
1秒前
1秒前
wys完成签到,获得积分10
2秒前
佳佳完成签到,获得积分10
3秒前
3秒前
曾诗婷完成签到 ,获得积分10
4秒前
wys发布了新的文献求助10
5秒前
TTTHANKS发布了新的文献求助10
8秒前
听宇完成签到,获得积分20
8秒前
三号技师完成签到,获得积分10
11秒前
伤心葫芦娃完成签到 ,获得积分10
15秒前
16秒前
星星完成签到,获得积分10
16秒前
泥泞o发布了新的文献求助10
20秒前
领导范儿应助青阳采纳,获得10
20秒前
5160完成签到,获得积分10
22秒前
乐研客完成签到,获得积分10
23秒前
25秒前
星星2完成签到,获得积分10
25秒前
FleeToMars完成签到 ,获得积分10
26秒前
小洁完成签到 ,获得积分10
26秒前
bji完成签到,获得积分10
28秒前
yige完成签到,获得积分10
29秒前
吃草草没完成签到 ,获得积分10
29秒前
31秒前
李晓萌发布了新的文献求助10
31秒前
天宇南神完成签到 ,获得积分10
31秒前
顾矜应助xxhxx采纳,获得10
31秒前
量子星尘发布了新的文献求助10
33秒前
hjc完成签到,获得积分10
36秒前
sailingluwl完成签到,获得积分10
37秒前
39秒前
Rae完成签到 ,获得积分10
41秒前
luster完成签到 ,获得积分10
41秒前
moonlight完成签到,获得积分10
42秒前
天使她男人完成签到,获得积分10
44秒前
小迷糊完成签到 ,获得积分10
44秒前
993494543完成签到,获得积分10
45秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573190
求助须知:如何正确求助?哪些是违规求助? 4659336
关于积分的说明 14724438
捐赠科研通 4599135
什么是DOI,文献DOI怎么找? 2524140
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704