A 3-mRNA-based prognostic signature of survival in oral squamous cell carcinoma

列线图 肿瘤科 医学 接收机工作特性 队列 内科学 小桶 头颈部鳞状细胞癌 生存分析 比例危险模型 Lasso(编程语言) 单变量 基因表达 生物 转录组 癌症 基因 多元统计 头颈部癌 机器学习 遗传学 万维网 计算机科学
作者
Ruoyan Cao,Qiqi Wu,Qiulan Li,Meiling Yao,Hongbo Zhou
出处
期刊:PeerJ [PeerJ]
卷期号:7: e7360-e7360 被引量:23
标识
DOI:10.7717/peerj.7360
摘要

Oral squamous cell carcinoma (OSCC) is the most common type of head and neck squamous cell carcinoma with an unsatisfactory prognosis. The aim of this study was to identify potential prognostic mRNA biomarkers of OSCC based on analysis of The Cancer Genome Atlas (TCGA).Expression profiles and clinical data of OSCC patients were collected from TCGA database. Univariate Cox analysis and the least absolute shrinkage and selection operator Cox (LASSO Cox) regression were used to primarily screen prognostic biomarkers. Then multivariate Cox analysis was performed to build a prognostic model based on the selected prognostic mRNAs. Nomograms were generated to predict the individual's overall survival at 3 and 5 years. The model performance was assessed by the time-dependent receiver operating characteristic (ROC) curve and calibration plot in both training cohort and validation cohort (GSE41613 from NCBI GEO databases). In addition, machine learning was used to assess the importance of risk factors of OSCC. Finally, in order to explore the potential mechanisms of OSCC, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was completed.Three mRNAs (CLEC3B, C6 and CLCN1) were finally identified as a prognostic biomarker pattern. The risk score was imputed as: (-0.38602 × expression level of CLEC3B) + (-0.20632 × expression level of CLCN1) + (0.31541 × expression level of C6). In the TCGA training cohort, the area under the curve (AUC) was 0.705 and 0.711 for 3- and 5-year survival, respectively. In the validation cohort, AUC was 0.718 and 0.717 for 3- and 5-year survival. A satisfactory agreement between predictive values and observation values was demonstrated by the calibration curve in the probabilities of 3- and 5- year survival in both cohorts. Furthermore, machine learning identified the 3-mRNA signature as the most important risk factor to survival of OSCC. Neuroactive ligand-receptor interaction was most enriched mostly in KEGG pathway analysis.A 3-mRNA signature (CLEC3B, C6 and CLCN1) successfully predicted the survival of OSCC patients in both training and test cohort. In addition, this signature was an independent and the most important risk factor of OSCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QAQ发布了新的文献求助10
刚刚
刚刚
刚刚
ttt发布了新的文献求助10
刚刚
1秒前
pp发布了新的文献求助10
2秒前
Zeee完成签到,获得积分10
2秒前
小豆子发布了新的文献求助10
3秒前
祖丽发布了新的文献求助10
3秒前
3秒前
起床做核酸完成签到,获得积分10
3秒前
4秒前
呼啦啦完成签到,获得积分20
4秒前
4秒前
木鱼给木鱼的求助进行了留言
5秒前
核桃发布了新的文献求助10
6秒前
Galato发布了新的文献求助10
6秒前
追光者完成签到,获得积分10
9秒前
9秒前
半城烟火发布了新的文献求助30
9秒前
9秒前
顺利发布了新的文献求助10
10秒前
Xu完成签到 ,获得积分10
11秒前
小二郎应助shshjzh采纳,获得10
11秒前
Zeee发布了新的文献求助10
12秒前
13秒前
祖丽完成签到,获得积分10
13秒前
桐桐应助paov45采纳,获得10
14秒前
胡佳文应助苁芯采纳,获得10
15秒前
完美世界应助111采纳,获得10
16秒前
16秒前
17秒前
DYL完成签到,获得积分10
17秒前
蓝天发布了新的文献求助10
17秒前
20秒前
刘一安发布了新的文献求助20
20秒前
20秒前
21秒前
21秒前
无花果应助mono采纳,获得30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648490
求助须知:如何正确求助?哪些是违规求助? 4775560
关于积分的说明 15044364
捐赠科研通 4807469
什么是DOI,文献DOI怎么找? 2570809
邀请新用户注册赠送积分活动 1527552
关于科研通互助平台的介绍 1486499