A 3-mRNA-based prognostic signature of survival in oral squamous cell carcinoma

列线图 肿瘤科 医学 接收机工作特性 队列 内科学 小桶 头颈部鳞状细胞癌 生存分析 比例危险模型 Lasso(编程语言) 单变量 基因表达 生物 转录组 癌症 基因 多元统计 头颈部癌 机器学习 遗传学 万维网 计算机科学
作者
Ruoyan Cao,Qiqi Wu,Qiulan Li,Meiling Yao,Hongbo Zhou
出处
期刊:PeerJ [PeerJ]
卷期号:7: e7360-e7360 被引量:23
标识
DOI:10.7717/peerj.7360
摘要

Oral squamous cell carcinoma (OSCC) is the most common type of head and neck squamous cell carcinoma with an unsatisfactory prognosis. The aim of this study was to identify potential prognostic mRNA biomarkers of OSCC based on analysis of The Cancer Genome Atlas (TCGA).Expression profiles and clinical data of OSCC patients were collected from TCGA database. Univariate Cox analysis and the least absolute shrinkage and selection operator Cox (LASSO Cox) regression were used to primarily screen prognostic biomarkers. Then multivariate Cox analysis was performed to build a prognostic model based on the selected prognostic mRNAs. Nomograms were generated to predict the individual's overall survival at 3 and 5 years. The model performance was assessed by the time-dependent receiver operating characteristic (ROC) curve and calibration plot in both training cohort and validation cohort (GSE41613 from NCBI GEO databases). In addition, machine learning was used to assess the importance of risk factors of OSCC. Finally, in order to explore the potential mechanisms of OSCC, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was completed.Three mRNAs (CLEC3B, C6 and CLCN1) were finally identified as a prognostic biomarker pattern. The risk score was imputed as: (-0.38602 × expression level of CLEC3B) + (-0.20632 × expression level of CLCN1) + (0.31541 × expression level of C6). In the TCGA training cohort, the area under the curve (AUC) was 0.705 and 0.711 for 3- and 5-year survival, respectively. In the validation cohort, AUC was 0.718 and 0.717 for 3- and 5-year survival. A satisfactory agreement between predictive values and observation values was demonstrated by the calibration curve in the probabilities of 3- and 5- year survival in both cohorts. Furthermore, machine learning identified the 3-mRNA signature as the most important risk factor to survival of OSCC. Neuroactive ligand-receptor interaction was most enriched mostly in KEGG pathway analysis.A 3-mRNA signature (CLEC3B, C6 and CLCN1) successfully predicted the survival of OSCC patients in both training and test cohort. In addition, this signature was an independent and the most important risk factor of OSCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lemonlmm完成签到,获得积分0
刚刚
wly完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
婉儿发布了新的文献求助10
2秒前
实验一定顺应助koiy采纳,获得10
3秒前
NexusExplorer应助好眠哈密瓜采纳,获得10
3秒前
3秒前
4秒前
5秒前
1234发布了新的文献求助10
5秒前
5秒前
源来凯始玺欢你完成签到,获得积分20
6秒前
8秒前
善学以致用应助22采纳,获得10
8秒前
肖肖发布了新的文献求助10
8秒前
9秒前
ZZY发布了新的文献求助10
10秒前
10秒前
婉儿完成签到,获得积分10
10秒前
11秒前
waqar246发布了新的文献求助10
11秒前
littleknees发布了新的文献求助10
12秒前
12秒前
王舍予完成签到,获得积分10
12秒前
13秒前
13秒前
小赵发布了新的文献求助10
13秒前
RR发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
领导范儿应助Rick采纳,获得10
15秒前
yujia完成签到,获得积分10
15秒前
15秒前
WangRN发布了新的文献求助10
15秒前
nidie发布了新的文献求助10
16秒前
他二舅flying完成签到,获得积分10
17秒前
HJJHJH发布了新的文献求助10
18秒前
Emy完成签到 ,获得积分10
18秒前
ZZY完成签到,获得积分10
18秒前
夏目发布了新的文献求助10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800