A 3-mRNA-based prognostic signature of survival in oral squamous cell carcinoma

列线图 肿瘤科 医学 接收机工作特性 队列 内科学 小桶 头颈部鳞状细胞癌 生存分析 比例危险模型 Lasso(编程语言) 单变量 基因表达 生物 转录组 癌症 基因 多元统计 头颈部癌 机器学习 遗传学 万维网 计算机科学
作者
Ruoyan Cao,Qiqi Wu,Qiulan Li,Meiling Yao,Hongbo Zhou
出处
期刊:PeerJ [PeerJ]
卷期号:7: e7360-e7360 被引量:23
标识
DOI:10.7717/peerj.7360
摘要

Oral squamous cell carcinoma (OSCC) is the most common type of head and neck squamous cell carcinoma with an unsatisfactory prognosis. The aim of this study was to identify potential prognostic mRNA biomarkers of OSCC based on analysis of The Cancer Genome Atlas (TCGA).Expression profiles and clinical data of OSCC patients were collected from TCGA database. Univariate Cox analysis and the least absolute shrinkage and selection operator Cox (LASSO Cox) regression were used to primarily screen prognostic biomarkers. Then multivariate Cox analysis was performed to build a prognostic model based on the selected prognostic mRNAs. Nomograms were generated to predict the individual's overall survival at 3 and 5 years. The model performance was assessed by the time-dependent receiver operating characteristic (ROC) curve and calibration plot in both training cohort and validation cohort (GSE41613 from NCBI GEO databases). In addition, machine learning was used to assess the importance of risk factors of OSCC. Finally, in order to explore the potential mechanisms of OSCC, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was completed.Three mRNAs (CLEC3B, C6 and CLCN1) were finally identified as a prognostic biomarker pattern. The risk score was imputed as: (-0.38602 × expression level of CLEC3B) + (-0.20632 × expression level of CLCN1) + (0.31541 × expression level of C6). In the TCGA training cohort, the area under the curve (AUC) was 0.705 and 0.711 for 3- and 5-year survival, respectively. In the validation cohort, AUC was 0.718 and 0.717 for 3- and 5-year survival. A satisfactory agreement between predictive values and observation values was demonstrated by the calibration curve in the probabilities of 3- and 5- year survival in both cohorts. Furthermore, machine learning identified the 3-mRNA signature as the most important risk factor to survival of OSCC. Neuroactive ligand-receptor interaction was most enriched mostly in KEGG pathway analysis.A 3-mRNA signature (CLEC3B, C6 and CLCN1) successfully predicted the survival of OSCC patients in both training and test cohort. In addition, this signature was an independent and the most important risk factor of OSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
宁幼萱完成签到,获得积分10
2秒前
张磊发布了新的文献求助10
3秒前
豆丁完成签到,获得积分10
4秒前
廉洁完成签到,获得积分0
5秒前
小弄开心完成签到 ,获得积分10
5秒前
哈哈哈发布了新的文献求助20
6秒前
7秒前
7秒前
9秒前
10秒前
10秒前
打打应助日天的马铃薯采纳,获得10
11秒前
我就是我完成签到,获得积分10
11秒前
橙子发布了新的文献求助10
12秒前
12秒前
ding应助kuny采纳,获得10
12秒前
烟花应助skbz采纳,获得10
13秒前
王木木发布了新的文献求助10
13秒前
楼迎荷发布了新的文献求助10
15秒前
15秒前
lilithnox发布了新的文献求助30
15秒前
16秒前
16秒前
SciGPT应助hao采纳,获得10
17秒前
lzx关闭了lzx文献求助
17秒前
文献发布了新的文献求助10
17秒前
快乐小豚鼠完成签到,获得积分10
17秒前
18秒前
忽忽完成签到,获得积分10
18秒前
王木木完成签到,获得积分10
18秒前
20秒前
柚子茶完成签到 ,获得积分10
20秒前
21秒前
22秒前
stop here发布了新的文献求助10
23秒前
24秒前
damn发布了新的文献求助10
25秒前
25秒前
洁净百川完成签到 ,获得积分10
26秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168294
求助须知:如何正确求助?哪些是违规求助? 2819584
关于积分的说明 7927169
捐赠科研通 2479425
什么是DOI,文献DOI怎么找? 1320833
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458