Automated Visual Inspection of Glass Bottle Bottom With Saliency Detection and Template Matching

瓶子 人工智能 计算机视觉 模板匹配 计算机科学 匹配(统计) 霍夫变换 纹理(宇宙学) 目视检查 模式识别(心理学) 图像(数学) 工程类 数学 机械工程 统计
作者
Xianen Zhou,Yaonan Wang,Changyan Xiao,Qing Zhu,Xiao Lu,Hui Zhang,Ji Ge,Huihuang Zhao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:68 (11): 4253-4267 被引量:82
标识
DOI:10.1109/tim.2018.2886977
摘要

Glass bottles are widely used as containers in the food and beverage industry, especially for beer and carbonated beverages. As the key part of a glass bottle, the bottle bottom and its quality are closely related to product safety. Therefore, the bottle bottom must be inspected before the bottle is used for packaging. In this paper, an apparatus based on machine vision is designed for real-time bottle bottom inspection, and a framework for the defect detection mainly using saliency detection and template matching is presented. Following a brief description of the apparatus, our emphasis is on the image analysis. First, we locate the bottom by combining Hough circle detection with the size prior, and we divide the region of interest into three measurement regions: central panel region, annular panel region, and annular texture region. Then, a saliency detection method is proposed for finding defective areas inside the central panel region. A multiscale filtering method is adopted to search for defects in the annular panel region. For the annular texture region, we combine template matching with multiscale filtering to detect defects. Finally, the defect detection results of the three measurement regions are fused to distinguish the quality of the tested bottle bottom. The proposed defect detection framework is evaluated on bottle bottom images acquired by our designed apparatus. The experimental results demonstrate that the proposed methods achieve the best performance in comparison with many conventional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
poppy完成签到,获得积分20
刚刚
眼睛大寻双完成签到,获得积分10
刚刚
优秀爆米花完成签到,获得积分10
1秒前
linjiebro完成签到,获得积分10
1秒前
秋水浮萍完成签到,获得积分10
2秒前
2秒前
2秒前
852应助cotton采纳,获得10
3秒前
xj0806完成签到,获得积分10
3秒前
4秒前
秋水浮萍发布了新的文献求助10
4秒前
ljn完成签到 ,获得积分10
4秒前
刘晶发布了新的文献求助10
6秒前
无奈天亦完成签到,获得积分20
6秒前
7秒前
8秒前
科研小班发布了新的文献求助10
9秒前
12完成签到 ,获得积分10
9秒前
21完成签到,获得积分10
9秒前
10秒前
灯火发布了新的文献求助10
10秒前
研友_VZG7GZ应助ZHH采纳,获得10
10秒前
zqf发布了新的文献求助10
11秒前
12秒前
洛小叶完成签到 ,获得积分10
12秒前
SciGPT应助杯装冰块采纳,获得30
13秒前
无奈天亦发布了新的文献求助10
13秒前
BILNQPL发布了新的文献求助10
13秒前
14秒前
激情的健柏完成签到,获得积分10
14秒前
zzx396发布了新的文献求助10
15秒前
17秒前
18秒前
cc陈发布了新的文献求助10
18秒前
欣喜成仁发布了新的文献求助10
18秒前
18秒前
科研通AI5应助白居易采纳,获得10
19秒前
科研通AI5应助可爱以松采纳,获得10
19秒前
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515364
求助须知:如何正确求助?哪些是违规求助? 3097702
关于积分的说明 9236476
捐赠科研通 2792578
什么是DOI,文献DOI怎么找? 1532606
邀请新用户注册赠送积分活动 712198
科研通“疑难数据库(出版商)”最低求助积分说明 707160