Deep Reinforcement Learning for Multiagent Systems: A Review of Challenges, Solutions, and Applications

强化学习 计算机科学 可观测性 人工智能 深度学习 国家(计算机科学) 学习迁移 动作(物理) 机器学习 算法 数学 物理 量子力学 应用数学
作者
Thanh Thi Nguyen,Ngoc Duy Nguyen,Saeid Nahavandi
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (9): 3826-3839 被引量:870
标识
DOI:10.1109/tcyb.2020.2977374
摘要

Reinforcement learning (RL) algorithms have been around for decades and employed to solve various sequential decision-making problems. These algorithms, however, have faced great challenges when dealing with high-dimensional environments. The recent development of deep learning has enabled RL methods to drive optimal policies for sophisticated and capable agents, which can perform efficiently in these challenging environments. This article addresses an important aspect of deep RL related to situations that require multiple agents to communicate and cooperate to solve complex tasks. A survey of different approaches to problems related to multiagent deep RL (MADRL) is presented, including nonstationarity, partial observability, continuous state and action spaces, multiagent training schemes, and multiagent transfer learning. The merits and demerits of the reviewed methods will be analyzed and discussed with their corresponding applications explored. It is envisaged that this review provides insights about various MADRL methods and can lead to the future development of more robust and highly useful multiagent learning methods for solving real-world problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜的猫咪完成签到,获得积分10
刚刚
刚刚
66应助马佳凯采纳,获得10
刚刚
1秒前
是述不是沭完成签到,获得积分10
1秒前
2秒前
lei完成签到,获得积分10
2秒前
瘦瘦的背包完成签到,获得积分10
3秒前
3秒前
赘婿应助Elaine采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
科研小白完成签到,获得积分10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得50
4秒前
CodeCraft应助科研通管家采纳,获得30
4秒前
控制小弟应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
彭于晏完成签到,获得积分10
5秒前
勤劳元瑶完成签到,获得积分10
5秒前
whatever举报muzi求助涉嫌违规
6秒前
小白发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740