A Real-Time and Hardware-Efficient Processor for Skeleton-Based Action Recognition With Lightweight Convolutional Neural Network

卷积神经网络 骨架(计算机编程) 计算机科学 动作识别 动作(物理) 人工智能 计算机硬件 模式识别(心理学) 计算机视觉 程序设计语言 物理 量子力学 班级(哲学)
作者
Bingyi Zhang,Jun Han,Zhize Huang,Jianwei Yang,Xiaoyang Zeng
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs [Institute of Electrical and Electronics Engineers]
卷期号:66 (12): 2052-2056 被引量:19
标识
DOI:10.1109/tcsii.2019.2899829
摘要

Skeleton-based human action recognition (HAR) has been extensively studied these years because body skeleton has the simple but informative representation of human action, which greatly reduces the computation complexity compared with the image-based HAR. As a result, it is suitable for low power implementation in embedded platforms. In this brief, we present a systematic approach to developing a hardware-efficient and low-power processor for real-time skeleton-based HAR. First, a lightweight HAR algorithm only using the one-dimensional convolutional neural network (1D-CNN) is proposed. Second, the singular value decomposition is employed to compress the weights in the fully connected (FC) layers of the proposed convolutional neural network. Third, a hardware processor implementing the proposed algorithm is presented. Aimed at optimizing area and energy, this processor utilizes a flexible structure supporting different kernel sizes of the 1D-CNN and reuses hardware in both convolution layers and FC layers. The proposed processor is implemented under SMIC 65-nm CMOS technology and consumes a total area of 1.016 mm 2 . Experimental results show that the proposed processor can achieve state-of-the-art classification accuracy in NTU RGB+D dataset and SBU dataset while outperforming previous solutions in area and energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助starry采纳,获得10
刚刚
温暖冰珍完成签到 ,获得积分10
刚刚
淳之风完成签到,获得积分20
1秒前
CarterXD应助hao采纳,获得30
1秒前
科研rain完成签到 ,获得积分10
1秒前
1秒前
清爽忆山发布了新的文献求助10
2秒前
睡觉晒太阳完成签到,获得积分10
2秒前
andy完成签到,获得积分10
2秒前
2秒前
Itachi12138完成签到,获得积分10
2秒前
CipherSage应助蓝莓松饼采纳,获得10
2秒前
2秒前
团团完成签到,获得积分10
2秒前
追寻的易烟完成签到,获得积分10
2秒前
snow完成签到,获得积分10
3秒前
3秒前
3秒前
1111完成签到,获得积分20
4秒前
爆米花应助笑点低蜜蜂采纳,获得10
4秒前
橘子味汽水完成签到 ,获得积分10
4秒前
Victor陈完成签到,获得积分10
4秒前
4秒前
seed85完成签到,获得积分10
4秒前
最初完成签到,获得积分20
5秒前
Hello应助Chem is try采纳,获得10
5秒前
hhh发布了新的文献求助10
5秒前
5秒前
6秒前
落寞白曼完成签到,获得积分10
7秒前
7秒前
海鸥海鸥发布了新的文献求助10
8秒前
别让我误会完成签到 ,获得积分10
9秒前
9秒前
KK发布了新的文献求助30
9秒前
娃娃完成签到 ,获得积分20
9秒前
科研通AI5应助结实的冰真采纳,获得30
9秒前
冷静的小熊猫完成签到,获得积分10
10秒前
Donnie完成签到,获得积分10
10秒前
若尘完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672