MAPK/ERK通路
蛋白激酶B
海马结构
信号转导
p38丝裂原活化蛋白激酶
激酶
蛋白激酶A
细胞生物学
生物
高磷酸化
PI3K/AKT/mTOR通路
神经科学
癌症研究
作者
Shiran Salomon‐Zimri,Amit Koren,Ariel Angel,Tali Ben‐Zur,Daniel Offen,Daniel M. Michaelson
标识
DOI:10.2174/1567205016666190228120254
摘要
Background: Alzheimer's Disease (AD) is associated with impairments in key brain Mitogen- Activated Protein Kinase (MAPK) signaling cascades including the p38, c-Jun N-terminal kinase (JNK), ERK and Akt pathways. Apolipoprotein E4 (ApoE4) is the most prevalent genetic risk factor of AD. Objectives: To investigate the extent to which the MAPK signaling pathway plays a role in mediating the pathological effects of apoE4 and can be reversed by experimental manipulations. Methods: Measurements of total level and activation of MAPK signaling pathway factors, obtained utilizing immunoblot assay of hippocampal tissues from naïve and viral-treated apoE3 and apoE4 targeted replacement mice. Methods: Measurements of total level and activation of MAPK signaling pathway factors, obtained utilizing immunoblot assay of hippocampal tissues from naïve and viral-treated apoE3 and apoE4 targeted replacement mice. Results: ApoE4 mice showed robust activation of the stress related p38 and JNK pathways and a corresponding decrease in Akt activity, which is coupled to activation of GSK3β and tau hyperphosphorylation. There was no effect on the ERK pathway. We have previously shown that the apoE4- related pathology, namely; accumulation of Aβ, hyper-phosphorylated tau, synaptic impairments and decreased VEGF levels can be reversed by up-regulation of VEGF level utilizing a VEGF-expressing adeno-associated virus. Utilizing this approach, we assessed the extent to which the AD-hallmark and synaptic pathologies of apoE4 are related to the corresponding MAPK signaling effects. This revealed that the reversal of the apoE4-driven pathology via VEGF treatment was associated with a reversal of the p38 and Akt related effects. Conclusion: Taken together, these results suggest that the p38 and Akt pathways play a role in mediating the AD-related pathological effects of apoE4 in the hippocampus.
科研通智能强力驱动
Strongly Powered by AbleSci AI